ORGANIC
LETTERS
2011
Vol. 13, No. 20
5588–5591
Dual Kinetically Controlled Native
Chemical Ligation Using a Combination of
Sulfanylproline and Sulfanylethylanilide
Peptide
Hao Ding, Akira Shigenaga, Kohei Sato, Ko Morishita, and Akira Otaka*
Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The
University of Tokushima, Shomachi, Tokushima 770-8505, Japan
Received August 25, 2011
ABSTRACT
Dual kinetically controlled native chemical ligation using a newly developed sulfanylproline-mediated reaction in combination with an
N-sulfanylethylanilide peptide was successfully applied to a previously unreported sequential coupling of peptide fragments added
simultaneously to the reaction.
Native chemical ligation (NCL) has had a significant
impact on protein/peptide chemistry.1 The original NCL
protocol requires two peptide segments: one is a thioester
peptide and the other is an N-terminal cysteinyl peptide.
Chemoselective reactions between the thioester and
N-terminal cysteine, including successive SꢀS and SꢀN
acyl transfers, yield the corresponding ligated product.
One potential limitation of the original NCL is that the
ligation site requires cysteine. The feasibility of NCLs at
noncysteinyl sites has been extensively explored, including
NCLs at alanine,2,3 valine,4 phenylalanine,5 lysine,6 leucine,7,8
and threonine sites.9 Essentially, such NCLs feature the
original NCL-like reaction of β- or γ-sulfanylamino acid
(4) (a) Haase, C.; Rohde, H.; Seitz, O. Angew. Chem., Int. Ed. 2008,
47, 6807. (b) Chen, J.; Wan, Q.; Yuan, Y.; Zhu, J.; Danishefsky, S. J.
Angew. Chem., Int. Ed. 2008, 47, 8521.
(5) Crich, D.; Banerjee, A. J. Am. Chem. Soc. 2007, 129, 10064.
(6) (a) Yang, R.; Pasunooti, K. K.; Li, F.; Liu, X.-W.; Liu, C.-F.
J. Am. Chem. Soc. 2009, 131, 13592. (b) Pasunooti, K. K.; Yang, R.;
Vedachalam, S.; Gorityala, B. K.; Liu, C.-F.; Liu, X.-W. Bioorg. Med.
Chem. Lett. 2009, 19, 6268.
(7) (a) Harpaz, Z.; Siman, P.; Kumar, K. S. A.; Brik, A. ChemBio-
Chem 2010, 11, 1232. (b) Tan, Z.; Shang, S.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2010, 49, 9500.
(8) Combination of ligations at Ala, Val, and Leu sites followed by
desulfurization; see: Shang, S.; Tan, Z.; Danishefsky, S. J. Proc. Natl.
Acad. Sci. U.S.A. 2011, 108, 5986.
(1) (a) Dawson, P.; Muir, T.; Clark-Lewis, I.; Kent, S. Science 1994,
266, 776. (b) Dawson, P. E.; Kent, S. B. H. Annu. Rev. Biochem. 2000, 69,
923. (c) Hackenberger, C. P. R.; Schwarzer, D. Angew. Chem., Int. Ed.
2008, 47, 10030.
(2) For a review of desulfurization protocol, see: Rohde, H.; Seitz, O.
Peptide Sci. 2010, 94, 551.
(9) Chen, J.; Wang, P.; Zhu, J.; Wan, Q.; Danishefsky, S. J. Tetra-
hedron 2010, 66, 2277.
(3) (a) Yan, L. Z.; Dawson, P. E. J. Am. Chem. Soc. 2001, 123, 526.
(b) Bang, D.; Makhatadze, G. I.; Tereshko, V.; Kossiakoff, A. A.; Kent,
S. B. Angew. Chem., Int. Ed. 2005, 44, 3852. (c) Pentelute, B. L.; Kent,
S. B. H. Org. Lett. 2007, 9, 687. (d) Wan, Q.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2007, 46, 9248. The use of selenocysteine followed by
deselenization; see:(e) Gieselman, M. D.; Xie, L.; van der Donk, W. A.
Org. Lett. 2001, 3, 1331. (f) Gieselman, M. D.; Zhu, Y.; Zhou, H.;
Galonic, D.; van der Donk, W. A. ChemBioChem 2002, 3, 709.
(g) Metanis, N.; Keinan, E.; Dawson, P. E. Angew. Chem., Int. Ed.
2010, 49, 7049.
(10) For other examples, see: (a) Roelfes, G.; Hilvert, D. Angew.
Chem., Int. Ed. 2003, 42, 2275. (b) Brik, A.; Yang, Y.-Y.; Ficht, S.;
Wong, C.-H. J. Am. Chem. Soc. 2006, 128, 5626. (c) Okamoto, R.;
Kajihara, Y. Angew. Chem., Int. Ed. 2008, 47, 5402. (d) Thomas, G. L.;
Payne, R. J. Chem. Commun. 2009, 4260. (e) Hojo, H.; Ozawa, C.;
Katayama, H.; Ueki, A.; Nakahara, Y.; Nakahara, Y. Angew. Chem.,
Int. Ed. 2010, 49, 5318. (f) Ackrill, T.; Anderson, D. W.; Macmillan, D.
Peptide Sci. 2010, 94, 495. (g) Thomas, G. L.; Hsieh, Y. S. Y.; Chun,
C. K. Y.; Cai, Z.-L.; Reimers, J. R.; Payne, R. J. Org. Lett. 2011, 13,
4770.
r
10.1021/ol202316v
Published on Web 09/14/2011
2011 American Chemical Society