Table 2 Optimization of OsO4 dihydroxylation
(entries 8–9). The best allose selectivity came from the use of
(DHQD)2DPP at ꢁ78 1C (entry 12). In order to increase
fucose selectivity, the C-2 allylic alcohol had to be protected
either as a pivaloate or TBS-ether (entries 13 or 14).
In conclusion, we have found that by incorporating the
Wharton reaction into post-glycosylation transformation,
new rare deoxy sugars can be easily obtained. These sugars
include 6-deoxy-altro-/fuco-/allo-, ascarylo-, 3,4,6-trideoxy
gluco-/manno- and 4,6-dideoxy-allo-pyranosides, which can
be prepared in either D- or L-enantiomeric series. The route
allows for the divergent synthesis of a range of sugars from the
advanced stage intermediate. Future work in exploring the
potential of employing this strategy in medicinal chemistry is
currently ongoing.
Entry R
Condition Ligand
Ratio (6 : 5)a Yield (%)b
1
2
3
4
5
6
–H
A
B
D
E
C
C
—
—
—
—
2 : 1
1 : 3
1 : 4
2 : 1
1 : 1.5
95
84
80
65
94
89
–H
–H
–H
–H
–H
(DHQ)2PHAL
(DHQD)2PHAL 1 : 1.2
Notes and references
7
–H
C
(DHQD)2DPP
97
1 V. Kren and L. Martinkova, Curr. Med. Chem., 2001, 8, 1303–1328.
2 (a) C. Thibodeaux, C. E. Melancuon III and H.-w. Liu, Nature,
2007, 446, 1008–1016; (b) C. Mendez, A. Luzhetsky, A. Bechthold
and J. A. Salas, Curr. Top. Med. Chem., 2008, 8, 710–724.
3 R. P. Gorshkova, E. N. Kalmykova, V. V. Isakov and Y. S.
Ovodov, Eur. J. Biochem., 1985, 150, 527–531.
4 (a) S. C. Timmons and C. N. Jakeman, Carbohydr. Res., 2007, 342,
2695–2704; (b) M. Shan, E. U. Sharif and G. A. O’Doherty,
Angew. Chem., Int. Ed., 2010, 49, 9492–9495.
5 (a) H. Guo and G. A. O’Doherty, Org. Lett., 2005, 7, 3921–3924;
(b) T. J. Baiga, H. Guo, Y. Xing, G. A. O’Doherty, A. Parrish,
A. Dillin, M. B. Austin, J. P. Noel and J. J. La Clair, ACS Chem.
Biol., 2008, 3, 294–304.
8
–H
D
DHQ
88
9
10
11
–H
–H
–H
D
D
D
DHQD
1 : 1
1 : 4
(DHQD)2PHAL 1 : 2
82
85
88
(DHQ)2PHAL
12
–H
D
(DHQD)2DPP
92
13
14
a
–Piv
–TBS A
A
—
—
90
95
Diastereomeric ratio are based on crude NMR analysis in the
b
comparison of anomeric H1. Combined yield after flash column
purification.
6 S. Kunimoto, T. Someno, Y. Yamazaki, J. Lu, H. Esumi and
H. Naganawa, J. Antibiot., 2003, 56, 1012–1017.
affect the inherent facial preference of 17 with ‘‘I+’’ type
reagents. In contrast, switching the C-2 alcohol from axial to
equatorial did change the regio-selectivity of iodonium ring
opening. A similar removal of both iodide and acetate moiety
was achieved successfully under either hydride A or radical-
reduction condition B to give a rare 4,6-dideoxy-allose sugar 19.
Allylic alcohol 17 was further reduced with diimide to give
3,4,6-trideoxy-glucose 20.
7 For other de novo syntheses of sugar, see: (a) S. Y. Ko, A. W. M.
Lee, S. Masamune, L. A. Reed and K. B. Sharpless, Science, 1983,
220, 949–951; (b) S. J. Danishefsky and M. P. DeNinno, Angew.
Chem., Int. Ed. Engl., 1987, 26, 15–23; (c) A. B. Northrup and
D. W. C. MacMillan, Science, 2004, 305, 1752–1755.
8 (a) J. M. Harris, M. D. Keranen and G. A. O’Doherty, J. Org.
Chem., 1999, 64, 2982–2983; (b) J. M. Harris, M. D. Keranen,
H. Nguyen, V. G. Young and G. A. O’Doherty, Carbohydr. Res.,
2000, 328, 17–36; (c) H. Guo and G. A. O’Doherty, Angew. Chem.,
Int. Ed., 2007, 46, 5206–5208; (d) M. Zhou and G. A. O’Doherty,
Org. Lett., 2008, 10, 2283–2286.
Although switching the C-2 hydroxyl stereochemistry had
no effect on the stereochemistry of iodonium formation, it
greatly influenced the facial selectivity of dihydroxylation. For
instance, when 17 was exposed to typical Upjohn conditions, it
gave a 2 to 1 mixture of fuco-sugar 6 and 6-deoxy-allo-sugar 5
(Table 2, entry 1). The facial selectivity of 17 may result from
many competing factors, such as solvent effect, reaction
temperature and the presence of chiral ligands. For example,
when t-BuOH was changed to aprotic CH2Cl2, the facial
preference switched from fucose to allose (entry 2). The
preference for allo-stereochemistry in CH2Cl2 was increased
by lowering the reaction temperature (entry 3). Unfortunately,
the hydroxy-directing Donohoe conditions gave the same
selectivity as the Upjohn condition (entry 4). The addition of
the Sharpless chiral ligands to the reaction in t-BuOH switched
the selectivity from fucose to allose (entries 5–7) with
(DHQD)2DPP being the best ligand. This effect could be
enhanced by switching to CH2Cl2 and cooling to ꢁ78 1C
(entries 8–12). In general, switching between the dimeric
pseudo-enantiomeric ligands has little effect, whereas the
monomeric ligands cause a significant difference at ꢁ78 1C
9 (a) Md. M. Ahmed, B. P. Berry, T. J. Hunter, D. J. Tomcik and
G. A. O’Doherty, Org. Lett., 2005, 7, 745–748; (b) Md. M. Ahmed
and G. A. O’Doherty, J. Org. Chem., 2005, 70, 10576–10578.
10 (a) R. S. Babu, S. R. Guppi and G. A. O’Doherty, Org. Lett., 2006,
8, 1605–1608; (b) M. Shan and G. A. O’Doherty, Org. Lett., 2006,
8, 5149–5152.
11 (a) M. H. Haukaas and G. A. O’Doherty, Org. Lett., 2001, 3,
3899–3902; (b) M. H. Haukaas and G. A. O’Doherty, Org. Lett.,
2002, 4, 1771–1774; (c) Md. M. Ahmed and G. A. O’Doherty,
Tetrahedron Lett., 2005, 46, 4151–4155.
12 M. Shan, Y. Xing and G. A. O’Doherty, J. Org. Chem., 2009, 74,
5961–5966.
13 P. S. Wharton and D. H. Bohlen, J. Org. Chem., 1961, 26,
3615–3616.
14 (a) J. Liu, J. J. Swidorski, S. D. Peters and R. P. Hsung, J. Org.
Chem., 2005, 70, 3898–3902; (b) R. Takagi, K. Tojo, M. Iwata and
K. Ohkata, Org. Biomol. Chem., 2005, 3, 2031–2036; (c) A. J.
Phillips, A. C. Hart and J. A. Henderson, Tetrahedron Lett., 2006,
47, 3743–3745.
15 C. Dupuy and J. L. Luche, Tetrahedron, 1989, 45, 3437–3444.
16 T. J. Donohoe, K. Blades, P. R. Moore, M. J. Waring, J. J. G.
Winter, M. Helliwell, N. J. Newcombe and G. Stemp, J. Org.
Chem., 2002, 67, 7946–7956.
17 Hydrolysis of 16a/b gave the previously prepared diastereomeric
benzyl pyranones (16a/b, R = H), see: M. Zhou and G. A.
O’Doherty, J. Org. Chem., 2007, 72, 2485–2493.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10251–10253 10253