Table 3 Oxidative cross-coupling of indoles with simple arenesa
(0.030 mmol), indole (0.60 mmol), EtCO2H (270 mL, 3.6 mmol) and
arene (39.6 mmol). The tube was evacuated and backfilled with O2
(3x), sealed and heated to 120 1C for 24 h with vigorous stirring. The
reaction mixture was then cooled to room temperature, diluted with
EtOAc and washed with sat’d. NaHCO3. The organic layer was
separated and the aqueous layer washed with EtOAc (2x). The
combined organics were dried over MgSO4, filtered and concentrated
by rotatory evaporation. The crude product was purified by silica gel
column chromatography (Et2O in hexanes) to yield the cross-coupled
product as a mixture of two isomers.
Entry
1
Indole
Catalyst
Yieldb
C2 : C3 Selectivityc
A
B
52%
66%
1 : 4.4
4.8 : 1
1 I. Cepanec, Synthesis of Biaryls, Elsevier, New York, 2004.
2 For relevant reviews, see: (a) F. Kakiuchi and T. Kochi, Synthesis,
2008, 2008, 3013; (b) B.-J. Li, S.-D. Yang and Z.-J. Shi, Synlett.,
2008, 949; (c) X. Chen, K. M. Engle, D. H. Wang and J. Q. Yu,
Angew. Chem., Int. Ed., 2009, 48, 5094; (d) T. W. Lyons and
M. S. Sanford, Chem. Rev., 2010, 110, 1147; (e) A. Lei, W. Liu,
C. Liu and M. Chen, Dalton Trans., 2010, 39, 10352; (f) S. L. You
and J. B. Xia, Top. Curr. Chem., 2010, 292, 165; (g) C. Liu,
H. Zhang, W. Shi and A. Lei, Chem. Rev., 2011, 111, 1780;
(h) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215.
3 For examples of Pd-catalyzed oxidative cross-coupling, see
ref. 2h and references therein, and: (a) D. R. Stuart and
K. Fagnou, Science, 2007, 316, 1172; (b) D. R. Stuart, E. Villemure
and K. Fagnou, J. Am. Chem. Soc., 2007, 129, 12072;
(c) S. Potavathri, A. S. Dumas, T. A. Dwight, G. R. Naumiec,
J. M. Hammann and B. DeBoef, Tetrahedron Lett., 2008, 49, 4050;
(d) S. Potavathri, K. C. Pereira, S. I. Gorelsky, A. Pike, A. P. LeBris
and B. DeBoef, J. Am. Chem. Soc., 2010, 132, 14676; (e) X. Gong,
G. Song, H. Zhang and X. Li, Org. Lett., 2011, 13, 1766; (f) Z. Wang,
K. Li, D. Zhao, J. Lan and J. You, Angew. Chem., Int. Ed., 2011,
50, 5365.
A
B
66%
76%
1 : 5.8
2 : 1
2
A
B
71%
68%
1 : 1.3
5 : 1
A
B
71%
66%
1.4 : 1
3.7 : 1
4
5
A
B
54%
71%
1 : 3.9
2.3 : 1
A
B
70%
65%
1 : 1.3
2.6 : 1
6
a
Condition A: 5% Pd(TFA)2 (30 mmol), 5% 2 (30 mmol), indole
(0.60 mmol), EtCO2H (3.6 mmol), benzene (39.6 mmol), 1 atm O2,
120 1C, 24 h. Condition B: 5% Pd(OPiv)2 (30 mmol), 5% 1 (30 mmol),
indole (0.60 mmol, EtCO2H (3.6 mmol), benzene (39.6 mmol), 1 atm
4 For reviews of Pd-catalyzed oxidation reactions that employ O2 as
the sole oxidant, see: (a) S. S. Stahl, Angew. Chem., Int. Ed., 2004,
43, 3400; (b) K. M. Gligorich and M. S. Sigman, Chem. Commun.,
2009, 3854 and references therein.
b
O2, 120 1C, 24 h. Isolated as a mixture of C2 and C3 regioisomers.
Determined by 1H NMR analysis of the reaction mixture.
c
5 Prospects for safe and scalable Pd-catalyzed aerobic oxidation
methods were considered in the recent development of a continuous-
flow process: X. Ye, M. D. Johnson, T. Diao, M. H. Yates and
S. S. Stahl, Green Chem., 2010, 12, 1180.
6 Pd-catalyzed oxidative cross-coupling that use O2 as the terminal
oxidant: (a) T. A. Dwight, N. R. Rue, D. Charyk, R. Josselyn and
B. DeBoef, Org. Lett., 2007, 9, 3137; (b) B. H. Li, S. L. Tian,
Z. Fang and Z. H. Shi, Angew. Chem., Int. Ed., 2008, 47, 1115;
(c) G. Brasche, J. Garcia-Fortanet and S. L. Buchwald, Org. Lett.,
2008, 10, 2207.
7 For studies of Pd(0) oxidation by O2, see: (a) J. Muzart,
Chem.–Asian J., 2006, 1, 508; (b) S. S. Stahl, J. L. Thorman,
R. C. Nelson and M. A. Kozee, J. Am. Chem. Soc., 2001,
123, 7188; (c) M. M. Konnick, I. A. Guzei and S. S. Stahl,
J. Am. Chem. Soc., 2004, 126, 10212; (d) M. M. Konnick and
S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 5753; (e) B. V. Popp and
S. S. Stahl, Chem.–Eur.J., 2009, 15, 2915.
A few preliminary mechanistic observations can be noted.
When reactions with catalysts A and B were carried out with a
1 :1 mixture of C6H6 and C6D6, deuterium kinetic isotope effects
varied from 2.8–3.8, depending upon the specific reaction.12
This primary KIE is consistent with a concerted metalation-
deprotonation pathway for C–H activation that has been charac-
terized previously in related reactions.14 When the reaction was
carried out with CD3CO2D as the acid additive, extensive
deuterium incorporation was observed into the benzene and
the indole substrates. Deuteration of the indole ring occurred
primarily at the C3-position, irrespective of the catalyst system,
even though catalyst B leads to predominant C2-functionaliza-
tion. Negligible deuteration occurs in the absence of PdII under
these conditions.12 These results, which indicate that C–H
activation is reversible for both substrates under the reaction
conditions, potentially provide circumstantial support for a
transmetalation mechanism, but more work is required before
a conclusion can be reached. The relative simplicity of the
catalyst systems should facilitate such mechanistic investigations.
We thank Paul White (UW-Madison) for experimental
assistance, and we are grateful to the NIH (R01-GM67163/
SSS; F32-GM087890/ANC) and the Camille and Henry
Dreyfus Postdoctoral Program in Environmental Chemistry
for financial support of this work. High-pressure instrumenta-
tion was supported by the NSF (CHE-0946901).
8 Oxidatively-induced reductive elimination from PdII has extensive
precedent. For recent examples relevant to catalytic oxidative
coupling reactions, see the following and references cited therein:
(a) X. Chen, C. E. Goodhue and J. Q. Yu, J. Am. Chem. Soc., 2006,
128, 12634; (b) M. P. Lanci, M. S. Remy, W. Kaminsky,
J. M. Mayer and M. S. Sanford, J. Am. Chem. Soc., 2009,
131, 15618; (c) J. R. Khusnutdinova, N. P. Rath and L. M. Mirica,
J. Am. Chem. Soc., 2010, 132, 7303–7305; (d) T. W. Lyons, K. L. Hull
and M. S. Sanford, J. Am. Chem. Soc., 2011, 133, 4455.
9 N. P. Grimster, C. Gauntlett, C. R. A. Godfrey and M. J. Gaunt,
Angew. Chem., Int. Ed., 2005, 44, 3125.
10 A. N. Campbell, P. B. White, I. A. Guzei and S. S. Stahl, J. Am.
Chem. Soc., 2010, 132, 15116.
11 Y. Izawa and S. S. Stahl, Adv. Synth. Catal., 2010, 352, 3223.
12 See the ESI for additional detailsz.
13 The mechanism of these reactions has received relatively
little attention. For a recent computational study, see: R. Meir,
S. Kozuch, A. Uhe and S. Shaik, Chem.–Eur. J., 2011, 17,
7623.
Notes and references
14 (a) S. I. Gorelsky, D. Lapointe and K. Fagnou, J. Am. Chem. Soc.,
2008, 130, 10848–10849; (b) L. Ackermann, Chem. Rev., 2011,
111, 1315.
y General procedure for catalytic reactions: A pressure tube fitted
with a plunger valve was charged with Pd (0.030 mmol), ligand
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10257–10259 10259