salinosporamide A was isolated from a marine actinomy-
cete Salinispora tropica5(Figure 1). These optically active
pyroglutamates bearing a quaternary stereogenic center
exhibit a broad array of important biological and poten-
tially valuable pharmaceutical properties, which have
inspired organic chemists to pursue efficient synthetic
methods for those compounds in recent years.6
Scheme 1. Tandem MA-Elimination/Deprotection/Lactamiza-
tion (3 Steps) for the Construction of Functionalized Pyroglu-
tamates Bearing a Unique Quaternary Stereogenic Center
available and cost-efficient imino ester derived from alde-
hyde and glycine ester, which demonstrates the R-proton
of the in situ generated R-substituted aldimino ester is still
acidic enough to be deprotonated, enabling the subsequent
second alkylation,9,10 we envisioned that the enantioen-
riched pyroglutamate derivatives bearing a quaternary
stereogenic center11 could be achieved through employing
R-substituted R-amino acids derived aldimino esters as the
nucleophile and MoritaꢀBaylisꢀHillman carbonates12 as
the Michael acceptors in the presence of an appropriate
chiral catalyst and base. Herein, we present the first
asymmetric synthesis of pyroglutamates containing a
unique quaternary stereogenic center via Cu(I)/(S)-BI-
NAP-catalyzed tandem Michael additionꢀelimination of
the R-substituted aldimino esters with MBH carbonates
followed by deprotection/lactamization.
In view of the above-mentioned literature work and
hypothesis, we initially examined the reactivity of MBH
carbonate 1a0 with (()-phenylalanine-derived aldimino
ester 2a in the presence of 10 mol % of the AgOAc/PPh3
complex as the catalyst and 2 equiv of K2CO3 as the base
in DCM at rt. To our delight, the tandem Michael addi-
tionꢀelimination reaction proceeded smoothly to afford
Figure 1. Representatives of biologically active pyroglutamates
bearing a quaternary stereogenic center.
Although there are elegant and creative strategies to-
ward the construction of a pyroglutamate architecture,6
the directly catalytic asymmetric approach to access opti-
cally pure pyroglutamate bearing a quaternary stereogenic
center has met with little success.7 To the best of our know-
ledge, only one noncatalytic and nonasymmetric example
has been reported for the synthesis of pyroglutamate
derivatives containing a quaternary stereogenic center via
stoichiometric LiHMDS-mediated tandem Michael addi-
tionꢀelimination of R-substituted aldimino esters with
MoritaꢀBaylisꢀHillman (MBH) carbonates followed by
a deprotection/lactamization protocol8(Scheme 1). There-
fore, the development of a catalytic asymmetricmethod for
the facile synthesis of enantioenriched pyroglutamate de-
rivatives bearing a unique quaternary stereogenic center is
in great demand.
Inspired by Maruoka’s excellent work on the efficient
synthesis of enantioenriched R,R-disubstituted R-amino
acids via PTC-catalyzed double alkylation of the easily
(9) (a) Ooi, T.; Taketuchi, M.; Kameda, M.; Maruoka, K. J. Am. Soc.
Chem. 2000, 122, 5228. (a) Ooi, T.; Arimura, Y.; Hiraiwa, Y.; Yuan, L.;
Kano, T.; Inoue, T.; Matsmoto, J.; Maruoka, K. Tetrahedron: Asym-
metry 2006, 17, 603. (b) O’Donnell, M. J; Wu, S. Tetrahedron: Asym-
metry 1992, 3, 591. (c) Lygo, B.; Crosby, J.; Peterson, J. A. Tetrahedron
Lett. 1999, 40, 8671.
(10) For recent representative excellent reviews on asymmetric
PTC, see: (a) Maruoka, K.; Ooi, T.; Kano, T. Chem. Commun. 2007,
1487. (b) Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46, 4222.
(c) Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656. (d) O’Donnell,
M. J. Acc. Chem. Res. 2004, 37, 506. (e) Lygo, B.; Andrews, B. I. Acc. Chem.
Res. 2004, 37, 518.
(5) Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.;
Jensen, P. R.; Fenical, W. Angew. Chem., Int. Ed. 2003, 42, 355.
(6) For reviews, see: (a) Moore, B. S.; Guilder, T. A. M. Angew.
Chem., Int. Ed. 2010, 49, 9346. (b) Shibasaki, M.; Kanai, M.; Fukuda, N.
Chem.;Asian J. 2007, 2, 20. (c) Masse, C. E.; Morgan, A. J.; Adams, J.;
Panek, J. S. Eur. J. Org. Chem. 2000, 2513. For recent examples, see:
(d) Onyango, E. O.; Tsurunoto, J.; Imai, N.; Takahashi, K.; Ishihara, J.;
Hatakeyama, S. Angew. Chem., Int. Ed. 2007, 46, 6703. (e) Bulger, P. G.;
Moloney, M. G.; Trippier, P. C. Org. Biomol. Chem. 2003, 1, 3726.
(f) Papillon, J. P. N.; Taylor, R. J. K. Org. Lett. 2000, 2, 1987. (g) Yamada,
T.; Sakaguchi, K.; Shinada, T.; Ohfune, Y.; Soloshonok, V. A. Tetrahe-
dron: Asymmetry 2008, 19, 2789. (h) Goswami, L. N.; Srivastava, S.;
Panday, S. K.; Dikshit, D. K. Tetrahedron Lett. 2001, 42, 7891.
(7) For the synthesis of glutamates or pyroglutamate derivatives
containing a tertiary stereogenic center, see: (a) Ramachandran, P. V.;
Madhi, S.; Bland-Berry, L.; Reddy, M. V. R.; O’Donnell, M. J. J. Am.
Chem. Soc. 2005, 127, 13450. (b) Chen, C.-G..; Hou, X.-L.; Pu, L. Org.
Lett. 2009, 11, 2703.
(11) For recent reviews, see: (a) Quaternary Stereocenters: Challenges
and Solutions for Organic Synthesis; Christoffers, J., Baro, A., Eds.; Wiley-
VCH: Weinheim, 2005. (b) Trost, B. M.; Jiang, C. Synthesis 2006, 369.
(12) For recent reviews, see: (a) Wei, Y.; Shi, M. Acc. Chem. Res.
2010, 43, 1005. (b) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem.
Rev. 2010, 110, 5447. (c) Declerck, V.; Martinez, J.; Lamaty, F. Chem.
Rev. 2007, 109, 1. (d) Ciganek, E. In Organic Reactions; Paquette, L. A.,
Ed.; Wiley: New York, 1997; Vol. 51, pp 201ꢀ350.
(13) It seems that the first step proceeds by way of tandem Michael
additionꢀelimination due to no reaction occurring when the aldimino
ester 2a reacted with CHdCHCH2OAc under the same reaction
conditions.
(8) Tekkam, S.; Alam, M. A.; Jonnalagadda, S. C.; Mereddy, V. R.
Chem. Commun. 2011, 47, 3219.
Org. Lett., Vol. 13, No. 20, 2011
5601