10.1002/anie.201903690
Angewandte Chemie International Edition
COMMUNICATION
126, 558. m) C. J. Allpress, A. Miłaczewska, T. Borowski, J. R. Bennett,
D. L. Tierney, A. M. Arif, L. M. Berreau, J. Am. Chem. Soc. 2014, 136,
7821. n) E. Boess, C. Schmitz, M. Klussmann, J. Am. Chem. Soc. 2012,
134, 5317. o) T. Shen, Y. Zhang, Y.-F. Liang, N. Jiao, J. Am. Chem.
Soc. 2016, 138, 13147. p) Y.-H. Zhang, J.-Q. Yu, J. Am. Chem. Soc.
2009, 131, 14654. q) D. Pun, T. Diao, S. S. Stahl, J. Am. Chem. Soc.
2013, 135, 8213. r) M. S. Maji, T. Pfeifer, A. Studer, Angew. Chem. Int.
Ed. 2008, 47, 9547; Angew. Chem. 2008, 120, 8855. s) A. Deb, S.
Manna, A. Modak, T. Patra, S. Maity, D. Maiti, Angew. Chem. Int. Ed.
2013, 52, 9747; Angew. Chem. 2013, 125, 9929.
also thank Xiaoxue Yang in this group for reproducing the
results of 2p and 3f.
Keywords: Molecular oxygen • Oxygenation• Allylic alcohols •
Rearrangement • Chemoselectivity
[1]
For some reviews of epoxidations, see: a) Q. H. Xia, H. Q. Ge, C. P. Ye,
Z. M. Liu, K. X. Su, Chem. Rev. 2005, 105, 1603. b) O. A. Wong, Y. Shi,
Chem. Rev. 2008, 108, 3958.
[9]
For some examples of epoxidations of olefins with molecular oxygen,
see: a) Y. Sawaki, Y. Ogata, J. Am. Chem. Soc. 1981, 103, 2049. b) J.
S. Hess, S. Leelasubcharoen, A. L. Rheingold, D. J. Doren, K. H.
Theopold, J. Am. Chem. Soc. 2002, 124, 2454. c) H. Tanaka, H.
Nishikawa, T. Uchida, T. Katsuki, J. Am. Chem. Soc. 2010, 132, 12034-
12041. d) M. Tada, S. Muratsugu, M. Kinoshita, T. Sasaki, Y. Iwasawa,
J. Am. Chem. Soc. 2010, 132, 713. e) K. Schröder, B. Join, A. J. Amali,
K. Junge, X. Ribas, M. Costas, M. Beller, Angew. Chem. Int. Ed. 2011,
50, 1425; Angew. Chem. 2011, 123, 1461. f) S. Koya, Y. Nishioka, H.
Mizoguchi, T. Uchida, T. Katsuki, Angew. Chem. Int. Ed. 2012, 51,
8243; Angew. Chem. 2012, 124, 8368. g) S.-J. Jeon, P. J. Walsh, J. Am.
Chem. Soc. 2003, 125, 9544. h) D. Shabashov, M. P. Doyle,
Tetrahedron 2013, 69, 10009. i) T. Mukaiyama, T. Takai, T. Yamada, O.
Rhode, Chem. Lett. 1990, 19, 1661. j) T. Takai, T. Yamada, T.
Mukaiyama, Chem. Lett. 1990, 19, 1657
[2]
[3]
a) R. M. Hanson, Chem. Rev. 1991, 91, 437. b) C. Wang, L. Luo, H.
Yamamoto, Acc. Chem. Res. 2016, 49, 193.
a) R. C. Michaelson, R. E. Palermo, K. B. Sharpless, J. Am. Chem. Soc.
1977, 99, 1990. b) R. M. Hanson, K. B. Sharpless, J. Org. Chem. 1986,
51, 1922.
[4]
[5]
H. Egami, T. Oguma, T. Katsuki, J. Am. Chem. Soc. 2010, 132, 5886.
a) W. Zhang, A. Basak, Y. Kosugi, Y. Hoshino, H. Yamamoto, Angew.
Chem. Int. Ed. 2005, 44, 4389; Angew. Chem. 2005, 117, 4463. b) Z. Li,
W. Zhang, H. Yamamoto, Angew. Chem. Int. Ed. 2008, 47, 7520;
Angew. Chem. 2008, 120, 7630. c) Z. Li, H. Yamamoto, J. Am. Chem.
Soc. 2010, 132, 7878. d) J. L. Olivares-Romero, Z. Li, H. Yamamoto, J.
Am. Chem. Soc. 2013, 135, 3411. e) S. Bhadra, M. Akakura, H.
Yamamoto, J. Am. Chem. Soc. 2015, 137, 15612.
[6]
[7]
a). Z.-X. Wang, Y. Shi, J. Org. Chem. 1998, 63, 3099. b) A. V. Malkov,
L. Czemerys, D. A. Malyshev, J. Org. Chem. 2009, 74, 3350. c) J.
Wang, L. Zhao, H. Shi, J. He, Angew. Chem. Int. Ed. 2011, 50, 9171;
Angew. Chem. 2011, 123, 9337. d) M. Noji, T. Kobayashi, Y. Uechi, A.
Kikuchi, H. Kondo, S. Sugiyama, K. Ishii, J. Org. Chem. 2015, 80, 3203.
e) N. C. Abascal, P. A. Lichtor, M. W. Giuliano, S. J. Miller, Chem. Sci.
2014, 5, 4504.
[10] (a) W. T. Borden, R. Hoffmann, T. Stuyver, B. Chen, J. Am. Chem. Soc.
2017, 139, 9010. (b) A. Maity, S.-M. Hyun, D. C. Powers, Nat. Chem.
2018, 10, 200.
[11] a) R. Antonioletti, F. Bonadies, A. Lattanzi, E. S. Monteagudo, A. Scettri,
Tetrahedron Lett. 1992, 33, 5433. b) X. Zhou, H. Ji, Chin. J. Chem.
2012, 30, 2103. c) M. Hamamoto, K. Nakayama, Y. Nishiyama, Y. Ishii,
J. Org. Chem. 1993, 58, 6421.
For some reviews, see: a) T. Punniyamurthy, S. Velusamy, J. Iqbal,
Chem. Rev. 2005, 105, 2329. b) S. S. Stahl, Angew. Chem. Int. Ed.
2004, 43, 3400; Angew. Chem. 2004, 116, 3480. c) K. M. Gligorich, M.
S. Sigman, Angew. Chem. Int. Ed. 2006, 45, 6612; Angew. Chem. 2006,
118, 6764. d) Z. Shi, C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev.
2012, 41, 3381. e) W. Wu, H. Jiang, Acc. Chem. Res. 2012, 45, 1736. f)
A. N. Campbell, S. S. Stahl, Acc. Chem. Res. 2012, 45, 851. g) S. E.
Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev.
2013, 113, 6234. h) Y.-F. Liang, N. Jiao, Acc. Chem. Res. 2017, 50,
1640. i) J. Serrano-Plana, I. Garcia-Bosch, A. Company, M. Costas,
Acc. Chem. Res. 2015, 48, 2397. j) X. Li, N. Jiao, Chin. J. Chem., 2017,
35, 1349. k) D. Wang, A. B. Weinstein, P. B. White, S. S. Stahl, Chem.
Rev. 2018, 118, 2636.
[12] For recent examples of semipinacol rearrangement, see: a) S. Y. Shim,
Y. Choi, D. H. Ryu, J. Am. Chem. Soc. 2018, 140, 11184. b) J.-W.
Dong, T. Ding, S.-Y. Zhang, Z.-M. Chen, Y.-Q. Tu, Angew. Chem. Int.
Ed. 2018, 57, 13192; Angew. Chem. 2018, 130, 13376. c) D. H.
Lukamto, M. J. Gaunt, J. Am. Chem. Soc. 2017, 139, 9160. d) B.-M.
Yang, P.-J. Cai, Y.-Q. Tu, Z.-X. Yu, Z.-M. Chen, S.-H. Wang, S.-H.
Wang, F.-M. Zhang, J. Am. Chem. Soc. 2015, 137, 8344. (e) B. Sahoo,
J.-L. Li, F. Glorius, Angew. Chem. Int. Ed. 2015, 54, 11577; Angew.
Chem. 2015, 127, 11740.
[13] (a) M. D’hooghe, S. Dekeukeleire, K. Mollet, C. Lategan, P. J. Smith, K.
Chibale, N. D. Kimpe, J. Med. Chem. 2009, 52, 4058. b) M. D’hooghe,
K. Mollet, S. Dekeukeleire, N. D. Kimpe, Org. Biomol. Chem., 2010, 8,
607.
[8]
For some examples of oxygenations with molecular oxygen, see: a) A.
Wang, H. Jiang, J. Am. Chem. Soc. 2008, 130, 5030. b) I. Garcia-
Bosch, A. Company, J. R. Frisch, M. Torrent-Sucarrat, M. Cardellach, I.
Gamba, M. Güell, L. Casella, L. Que Jr, X. Ribas, J. M. Luis, M. Costas,
Angew. Chem. Int. Ed. 2010, 49, 2406; Angew. Chem. 2010, 122, 2456.
c) S. Chiba, L. Zhang, J.-Y. Lee, J. Am. Chem. Soc. 2010, 132, 7266. d)
C. Zhang, N. Jiao, J. Am. Chem. Soc. 2010, 132, 28. e) H. Wang, Y.
Wang, D. Liang, L. Liu, J. Zhang, Q. Zhu, Angew. Chem. Int. Ed. 2011,
50, 5678; Angew. Chem. 2011, 123, 5796. f) K. K. Toh, Y.-F. Wang, E.
P. J. Ng, S. Chiba, J. Am. Chem. Soc. 2011, 133, 13942. g) G. J.
Chuang, W. Wang, E. Lee, T. Ritter, J. Am. Chem. Soc. 2011, 133,
1760. h) Q. Liu, P. Wu, Y. Yang, Z. Zeng, J. Liu, H. Yi, A. Lei, Angew.
Chem. Int. Ed. 2012, 51, 4666; Angew. Chem. 2012, 124, 4744. i) J.-C.
Wu, R.-J. Song, Z.-Q. Wang, X.-C. Huang, Y.-X. Xie, J.-H. Li, Angew.
Chem. Int. Ed. 2012, 51, 3453; Angew. Chem. 2012, 124, 3509. j) T.
Wdowik, S. R. Chemler, J. Am. Chem. Soc. 2017, 139, 9515. k) D. Pun,
T. Diao, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 8213. l) Y.-F. Liang,
N. Jiao, Angew. Chem. Int. Ed. 2014, 53, 548; Angew. Chem. 2014,
[14] Z.-Q. Liu, L. Zhao, X. Shang, Z. Cui, Org. Lett. 2012, 14, 3218.
[15] For some reviews, see: a) C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev.
2012, 41, 3464. b) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C.
Kozlowski, Chem. Rev. 2013, 113, 6234.
[16] a) L. Que Jr, W. B. Tolman, Nature 2008, 455, 333. b) C. Zhang, P.
Feng, N. Jiao, J. Am. Chem. Soc. 2013, 135, 15257. c) X. Huang, X. Li,
M. Zou, S. Song, C. Tang, Y. Yuan, N. Jiao, J. Am. Chem. Soc. 2014,
136, 14858. d) G. d. P. Gomes, V. Vil, A. Terent'ev, I. V. Alabugin,
Chem. Sci. 2015, 6, 6783. e) G. dos Passos Gomes, I. A. Yaremenko,
P. S. Radulov, R. A. Novikov, V. V. Chernyshev, A. A. Korlyukov, G. I.
Nikishin, I. V. Alabugin, A. O. Terent'ev, Angew. Chem. Int. Ed. 2017,
56, 4955; Angew. Chem. 2017, 129, 5037.
[17] a) J. Platz, J. Sehested, T. Møgelberg, O. J. Nielsen, T. J. Wallington. J.
Chem. Soc., Faraday Trans. 1997, 93, 2855. b) S. Mondal, B. Gold, R.
K. Mohamed, I. V. Alabugin, Chem. Eur. J. 2014, 20, 8664.
This article is protected by copyright. All rights reserved.