The Journal of Organic Chemistry
NOTE
[(M + Na)+, 10], 432 [(M + H)+, 100], 318 (20), 300 (92); HRMS
(M + H)+ calcd for C21H21NO5S2 432.0939, found 432.0934.
Compounds 6 and 7. A magnetically stirred solution of xanthate 5
(217 mg, 0.50 mmol) in freshly distilled chlorobenzene (10 mL)
maintained under a nitrogen atmosphere was treated with benzoic acid
(184 mg, 1.51 mmol) and the ensuing mixture heated at reflux for 5 h.
The cooled reaction mixture was quenched with NaHCO3 (10 mL of a
saturated aqueous solution) and the separated aqueous layer extracted
with CH2Cl2 (3 Â 15 mL). The combined organic phases were then
dried (Na2SO4), filtered, and concentrated under reduced pressure at
40 °C. The malodorous residue obtained in this way was subjected to
flash chromatography (silica, 1:19 v/v methanol/CH2Cl2 elution), thus
affording three fractions, A, B, and C.
this material gave compound 31 (28 mg, 91%) as small, white crystalline
masses: mp 195À196 °C (lit.1 mp 186À187 °C); [α]D À47.0 (c 0.2,
CDCl3); 1H NMR (CDCl3, 400 MHz) δ see Table S2 in the Supporting
Information; 13C NMR (CDCl3, 100 MHz) δ see Table S1 in the
Supporting Information; IR (KBr) νmax 3389, 2931, 1710, 1616, 1503,
1480, 1447, 1385, 1263, 1122, 1073, 1034 cmÀ1; MS (EI, 70 eV) m/z
317 (M+•, 48), 301 (3), 273 (2), 242 (5), 228 (5), 172 (8), 126 (8), 96
(100); HRMS M+• calcd for C17H19NO5 317.1263, found 317.1265.
’ ASSOCIATED CONTENT
S
Supporting Information. CIF files, crystallographic data,
b
and anisotropic displacement ellipsoid plots derived from the
single-crystal X-ray analyses of compounds 3 and 6; Tables
S1ÀS3 comparing spectral data derived from compound ent-1,
Concentration of fraction A (Rf = 0.8 in 1:20 v/v ammonia saturated
MeOH/CH2Cl2) afforded xanthate 5 (26 mg, 12% recovery) that was
identical, in all respects, with an authentic sample.
nobilistine A, and compound 3; H and 13C NMR spectra for
1
Concentration of fraction B (Rf = 0.7 in 1:20 v/v ammonia saturated
MeOH/CH2Cl2) afforded benzoate 7 (45 mg, 21%) as an orange foam:
[α]D À47.8 (c 0.8, CDCl3); 1H NMR (CDCl3, 400 MHz) δ 8.04À8.01
(complex m, 2H), 7.59À7.52 (complex m, 1H), 7.55 (s, 1H), 7.43 (t, J =
7.7 Hz, 2H), 6.97 (s, 1H), 6.06 (d, J = 1.2 Hz, 1H), 6.06 (d, J = 1.2 Hz,
1H), 5.33 (m, 1H), 4.86 (dd, J = 6.4 and 4.3 Hz, 1H), 3.35À3.26
(complex m, 1H), 3.25 (m, 1H), 2.79À2.76 (complex m, 1H),
2.43À2.31 (complex m, 2H), 2.22 (s, 3H), 2.20À2.14 (complex m,
1H), 2.03À1.95 (complex m, 1H), 1.89 (dt, J = 13.6 and 9.1 Hz, 1H),
1.75 (broad s, 1H); 13C NMR (CDCl3, 100 MHz) δ 165.7, 163.7, 152.3,
147.3, 133.1, 129.9, 129.7, 128.4, 118.8, 110.0, 106.7, 102.0, 78.0, 70.9,
66.0, 55.4, 42.6, 37.8, 35.0, 30.2, 29.7 (one signal obscured or over-
lapping); IR (KBr) νmax 2939, 1717, 1616, 1503, 1480, 1449, 1383, 1264,
1111, 1071, 1035, 934, 713 cmÀ1; MS (EI, 70 eV) m/z 421 (M+•, 50),
316 (16), 299 (26), 96 (100); HRMS M+• calcd for C24H23NO6
421.1525, found 421.1526.
compounds 3 and 5À7. This material is available free of charge
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: mgb@rsc.anu.edu.au.
’ ACKNOWLEDGMENT
We thank the Australian Research Council and the Institute of
Advanced Studies for generous financial support. Dr. Laurent
Petit is warmly thanked for drawing our attention to the inversion
protocol used here.
’ REFERENCES
Concentration of fraction C (Rf = 0.4 in 1:20 v/v ammonia saturated
methanol/CH2Cl2) afforded 7-azabicyclo[2.2.1]heptane 6 (78 mg,
37%) as a white crystalline solid: mp 145À147 °C; [α]D À50.3 (c 1.2,
CDCl3); 1H NMR (CDCl3, 400 MHz) δ 7.81À7.77 (complex m, 2H),
7.56À7.51 (complex m, 1H), 7.52 (s, 1H), 7.42À7.37 (complex m, 2H),
6.46 (s, 1H), 5.87 (d, J = 1.4 Hz, 1H), 5.52 (d, J = 1.4 Hz, 1H), 5.18 (ddd,
J = 11.0, 5.0, and 1.4 Hz, 1H), 4.22 (m, 1H), 4.11 (dt, J = 11.0 and 5.7 Hz,
1H), 3.68 (td, J = 4.6 and 0.8 Hz, 1H), 3.63 (dd, J = 11.0 and 4.9 Hz, 1H),
3.37 (dd, J = 4.9 and 0.9 Hz, 1H), 2.55 (s, 3H), 2.01 (dd, J = 12.8 and
8.8 Hz, 1H), 1.82À1.74 (complex m, 1H), 1.71À1.62 (complex m, 1H),
1.57À1.50 (complex m, 1H), 1.30 (m, 1H); 13C NMR (CDCl3, 100 MHz)
δ 166.3, 162.7, 152.8, 147.0, 135.0, 132.8, 130.1, 129.3, 128.3, 116.8,
109.2, 106.4, 101.7, 77.3, 70.5, 66.6, 62.8, 35.6, 35.0, 34.1, 33.0, 30.1; IR
(KBr) νmax 2947, 1710, 1619, 1503, 1481, 1449, 1410, 1274, 1251, 1126,
1035 cmÀ1; MS (EI, 70 eV) m/z 421 (M+•, 12), 299 (19), 232 (100),
231 (98), 162 (25), 126 (77); HRMS M+• calcd for C24H23NO6
421.1525, found 421.1522.
Compound 3. A magnetically stirred solution of benzoate 7 (50 mg,
0.12 mmol) in methanol (10 mL) was treated with anhydrous KHCO3
(20 mg, 0.13 mmol) and the resulting mixture stirred at 18 °C for 18 h
while being maintained under an atmosphere of nitrogen. The reaction
mixture thus obtained was acidified with glacial acetic acid (∼1 mL) and
the aqueous layer extracted with diethyl ether (10 mL). The separated
aqueous layer was then brought to pH = 8 using sodium bicarbonate
(saturated aqueous solution) and extracted with dichloromethane (3 Â
10 mL). The combined organic phases were washed with brine (1 Â
10 mL) and dried (Na2SO4) before being filtered and concentrated
under reduced pressure at 40 °C. The residue thus obtained was
subjected to flash chromatography (silica, 2:4:5 v/v/v ammonia satu-
rated methanol/ethyl acetate/hexane elution), and concentration of the
appropriate fractions (Rf = 0.2 in 1:20 v/v ammonia saturated methanol/
CH2Cl2 elution) afforded a white foam. Crystallization (ethyl acetate) of
(1) Evidente, A.; Abou-Donia, A. H.; Darwish, F. A.; Amer, M. E.;
Kassem, F. F.; Hammoda, H. A. M.; Motta, A. Phytochemistry 1999,
51, 1151.
(2) See, for example: (a) Evidente, A.; Andolfi, A.; Abou-Donia,
A. H.; Touema, S. M.; Hammoda, H. M.; Shawky, E.; Motta, A.
Phytochemistry 2004, 65, 2113. (b) Liu, J.; Hu, W.-X.; He, L.-F.; Ye,
M.; Li, Y. FEBS Lett. 2004, 578, 245. (c) Liu, X.-s.; Jiang, J.; Jiao, X.-y.;
Wu, Y.-e.; Lin, J.-h.; Cai, Y.-m. Cancer Lett. 2009, 274, 16. (d) McNulty,
J.; Nair, J. J.; Bastida, J.; Pandey, S.; Griffin, C. Phytochemistry 2009,
70, 913. (e) Lamoral-Theys, D.; Andolfi, A.; Van Goietsenoven, G.;
Cimmino, A.; Le Calvꢀe, B.; Wauthoz, N.; Mꢀegalizzi, V.; Bruyꢁere, C.;
Dubois, J.; Mathieu, V.; Kornienko, A.; Kiss, R.; Evidente, A. J. Med.
Chem. 2009, 52, 6244. (f) Evidente, A.; Kornienko, A. Phytochem. Rev.
2009, 8, 449. (g) Evidente, A.; Kireev, A. S.; Jenkins, A. R.; Romero,
A. E.; Steelant, W. F. A.; Van Slambrouck, S.; Kornienko, A. Planta Med.
2009, 75, 501. (h) Van Goietsenoven, G.; Andolfi, A.; Lallemand, B.;
Cimmino, A.; Lamoral-Theys, D.; Gras, T.; Abou-Donia, A.; Dubois, J.;
Lefranc, F.; Mathieu, V.; Kornienko, A.; Kiss, R.; Evidente, A. J. Nat.
Prod. 2010, 73, 1223. (i) Hayden, R. E.; Pratt, G.; Drayson, M. T.; Bunce,
C. M. Haematologica 2010, 95, 1889. (j) Feng, T.; Wang, Y.-Y.; Su, J.; Li,
Y.; Cai, X.-H.; Luo, X.-D. Helv. Chim. Acta 2011, 94, 178.
(3) Schwartz, B. D.; Jones, M. T.; Banwell, M. G.; Cade, I. A. Org.
Lett. 2010, 12, 5210.
(4) Compound 2 can be obtained from Questor, Queen’s University
of Belfast, Northern Ireland. Questor Centre Contact Page: http://
questor.qub.ac.uk/Contact/ (accessed August 10, 2011). For reviews on
methods for generating cis-1,2-dihydrocatechols by microbial dihydroxy-
lation of the corresponding aromatics, as well as the synthetic applica-
tions of these metabolites, see: (a) Hudlicky, T.; Gonzalez, D.; Gibson,
D. T. Aldrichim. Acta 1999, 32, 35. (b) Banwell, M. G.; Edwards, A. J.;
Harfoot, G. J.; Jolliffe, K. A.; McLeod, M. D.; McRae, K. J.; Stewart, S. G.;
V€ogtle, M. Pure Appl. Chem. 2003, 75, 223. (c) Johnson, R. A. Org.
React. 2004, 63, 117. (d) Hudlicky, T.; Reed, J. W. Synlett 2009, 685.
8562
dx.doi.org/10.1021/jo2016899 |J. Org. Chem. 2011, 76, 8560–8563