3J(H–H) = 7.6, 1H, H2]; 6.33 [dd, 3J(H–H) = 7.6, 4J(H–P) = 3.2,
1H, H1]; 5.58 [d, 4J(H–P) = 3.6, 3J(H–Pt) = 15.0, 2H, CH2]; 2.38
[s, 3H, CH3]; 2.30 [s, 3H, Me]. 31P NMR (121.4 MHz, CDCl3): d =
22.85 [s, J(P–Pt) = 4169.7]. ESI-MS, m/z: 755.21, [M-Br]. Anal.
calc. for C40H35BrNPPt: C: 57.49; H: 4.22; N: 1.68%. Found: C:
57.8; H: 4.4; N: 1.7%.
refined using a riding model with an isotropic temperature factor
equal to 1.2 times the equivalent temperature factor of the atom
to which they are linked. Further details are given in Table 2.
Acknowledgements
We thank the Ministerio de Ciencia y Tecnolog´ıa (project
CTQ2009-11501) for financial support.
Compound
[PtBr{C6H3(4-CH3C6H4)CH2N CH(2,6-C6H3-
F2)}SEt2] (2i). This compound was obtained from 66 mg
(0.21 mmol) of imine 1i using the same procedure as for 2d in
toluene. In this case, a moderate amount of metallic platinum was
filtered off prior to solvent removal. A yellow oil which could not
be purified due to its low stability was obtained. An analogous
result was obtained when the reaction was carried out in benzene.
1H NMR (300 MHz, CDCl3): d = 8.71 [s, 1H, CHN]; 5.21 [s,
3J(H–Pt) = 30.0, 2H, NCH2]; 3.28 [m, 2H, SCH2]; 2.85 [m, 2H,
SCH2]; 2.41 [s, 3H, CH3]; 1.39 [t, 3J(H–H) = 7.5, 6H, SCH2CH3].
19F NMR (282.4 MHz, CDCl3): d = -107.54 [t, 3J(H–F) = 8.5].
References
1 R. F. Heck and J. P. Nolley Jr, J. Org. Chem., 1972, 37, 2320–2322.
2 E.-I. Negishi, A. O. King and N. Okukado, J. Org. Chem., 1977, 42,
1821–1823.
3 N. Miyaura and A. Suzuki, J. Chem. Soc., Chem. Commun., 1979,
866–867.
4 (a) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007, 107,
174–238; (b) G. P. Mc Glacken and L. M. Bateman, Chem. Soc. Rev.,
2009, 38, 2447–2464.
5 A. J. Canty, Dalton Trans., 2009, 10409–10417.
6 R. Mart´ın, M. Crespo, M. Font-Bardia and T. Calvet, Organometallics,
2009, 28, 587–597.
Compound
[PtBr{C6H3(4-CH3C6H4)CH2N CH(2,6-C6H3-
F2)}PPh3] (3i). This compound was obtained from 66 mg
(0.21 mmol) of imine 1i using the same procedure as for 2d. In
this case, a moderate amount of metallic platinum was filtered
off prior to solvent removal. Recrystallisation in CH2Cl2/MeOH
mixtures led to [PtBr(4-CH3C6H4)(PPh3)2] (ca. 10 mg) which was
filtered off; further crystallisation produced a white-yellow solid
(3i). Yield: 61 mg (33%). When the reaction was carried out in
benzene the yield was 72 mg (39%). 1H NMR (400 MHz, CDCl3):
7 (a) M. Crespo, M. Font-Bard´ıa and X. Solans, Organometallics, 2004,
23, 1708–1713; (b) A. Capape´, M. Crespo, J. Granell, A. Vizcarro, J.
Zafrilla, M. Font-Bardia and X. Solans, Chem. Commun., 2006, 4128–
4130; (c) M. Font-Bard´ıa, C. Gallego, M. Mart´ınez and X. Solans,
Organometallics, 2002, 21, 3305–3307; (d) J. Albert, R. Bosque, M.
Crespo, J. Granell, J. Rodriguez and J. Zafrilla, Organometallics, 2010,
29, 4619–4627.
8 T. Calvet, M. Crespo, M. Font-Bardia, K. Go´mez, G. Gonza´lez and
M. Mart´ınez, Organometallics, 2009, 28, 5096–5106.
9 Part of this work appeared in a preliminary communication: M. Crespo,
T. Calvet and M. Font-Bardia, Dalton Trans., 2010, 39, 6936–6938.
10 P. W. Clark, S. F. Dyke, G. Smith and C. H. L. Kennard, J. Organomet.
Chem., 1987, 330(3), 447–460.
d = 9.79 [d, 4J(H–P) = 6.0, 3J(H–Pt) = 40.4, 1H, CHN]; 7.87–7.45
[m, 6H, PPh3ortho]; 7.44–7.38 [m, 10H, PPh3
+ 1HAr]; {7.14
meta, para
[3J(H–H) = 8.0]; 7.08 [3J(H–H) = 8.0], 4H, AB system, H6,7};
11 M. Crespo, M. Mart´ınez and J. Sales, Organometallics, 1992, 11, 1288–
1295.
3
3
6.90 [t, J(H–F) = 8.4, 2H, H1]; 6.80 [d, J(H–H) = 7.2, 1H];
6.54 [m, 1H]; 6.45 [t, 3J(H–H) = 7.6, 1H, H2]; 4.97 [s, 3J(H–Pt) =
12 (a) O. Lo´pez, M. Crespo, M. Font-Bard´ıa and X. Solans,
Organometallics, 1997, 16, 1233–1240; (b) M. Crespo, X. Solans and
M. Font-Bard´ıa, Organometallics, 1995, 14, 355–364.
13 For a recent review on cyclometallation using d-block transition metals,
see: M. Albrecht, Chem. Rev., 2010, 110, 576–623.
14 (a) S. H. Crosby, G. J. Clarkson and J. P. Rourke, J. Am. Chem. Soc.,
2009, 131, 14142–14143; (b) A. Zucca, S. Stoccoro, M. A. Cinellu, G.
Minghetti, M. Manassero and M. Sansoni, Eur. J. Inorg. Chem., 2002,
3336–3346; (c) A. W. Garner, C. F. Harris, D. A. K. Vezzu, R. D. Pyke
and S. Huo, Chem. Commun., 2011, 47, 1902–1904; (d) S. H. Crosby,
R. J. Deeth, G. J. Clarkson and J. P. Rourke, Dalton Trans., 2011, 40,
1227–1229.
15 See for instance: (a) J. Albert, J. Granell, J. Sales, X. Solans and M.
Font-Altaba, Organometallics, 1986, 5, 2567–2568; (b) J. Albert, R. M.
Ceder, M. Gomez, J. Granell and J. Sales, Organometallics, 1992, 11,
1536–1541; (c) R. Bosque, C. Lo´pez, J. Sales, D. Tramuns and X. Solans,
J. Chem. Soc., Dalton Trans., 1995, 2445–2452; (d) C. L. Chen, Y. H.
Liu, S. M. Peng and S. T. Liu, Tetrahedron Lett., 2005, 46, 521–523;
(e) J. Albert, J. M. Cadena, A. Gonzalez, J. Granell, X. Solans and M.
Font-Bardia, Chem.–Eur. J., 2006, 12, 887–894.
25.0, 2H, CH2]; 2.32 [s, 3H, CH3]. gHSQC-{ H,13C} NMR (1H:
1
400 MHz, CDCl3): d (13C) = 160.73 [CHN]; {136.31; 133.65;
125.53; 125.05, C2,3,4,5};135.54 [PPh3, Cortho]; 130.59 [PPh3, Cmeta];
{128.51; 128.93, C6,7}; 127.91 [PPh3, Cpara]; 111.99 [C1]; 66.83
[CH2]; 20.89 [CH3]. 19F NMR (376.5 MHz, CDCl3): d = -106.34
3
[t, J(H–F) = 8.4]. 31P NMR (121.4 MHz, CDCl3): d = 20.35 [s,
1J(P–Pt) = 4285.3]. 195Pt NMR (54 MHz, CDCl3): d = -4045.6 [d,
1J(P–Pt) = 4303.3]. ESI-MS, m/z: 777.18 [M-Br]+. Anal. calc.
C39H31BrF2NPPt·CH2Cl2: C: 50.97; H: 3.53; N: 1.49%. Found: C:
50.8; H: 3.5; N: 1.1%.
X-ray structure analysis
Prismatic crystals were selected and mounted on a MAR345
diffractometer with an image plate detector. Intensities were
collected with graphite monochromatized Mo Ka radiation. The
structures were solved by direct methods using SHELXS computer
program21 and refined by the full-matrix least-squares method,
with the SHELXL97 computer program using 6984 (2c), 27088
(3d), 16366 (3e), 16162 (3h) and 16933 (3i) reflections (very negative
intensities were not assumed). The function minimized was R w |
16 A. Capape´, M. Crespo, J. Granell, M. Font-Bardia and X. Solans,
Dalton Trans., 2007, 2030–2039.
17 C. M. Anderson, M. Crespo, G. Ferguson, A. J. Lough and R. J.
Puddephatt, Organometallics, 1992, 11, 1177–1181.
18 H. F. Klein, S. Camadanli, R. Beck and D. Leukel, Angew. Chem., Int.
Ed., 2005, 44, 975–977.
19 B. R. Steele and K. Vrieze, Transition Met. Chem., 1977, 2, 140–
144.
|Fo|2 - |Fc|2 |2, where w = [s (I) + (0.0447 P)2 + 0.2738 P]-1 (2c),
2
20 M. Font-Bardia, C. Gallego, G. Gonzalez, M. Mart´ınez, A. E. Merbach
and X. Solans, Dalton Trans., 2003, 1106–1113.
2
2
w = [s (I) + (0.0717 P)2 + 1.3414 P]-1 (3d), w = [s (I) + (0.0995
P)2 + 2.9343 P]-1 (3e), w = [s (I) + (0.0592 P)2+ 0.2478 P]-1 (3h)
2
21 G. M. Sheldrick, SHELXS97,
A Computer Program for Crys-
tal Structure Determination, University of Go¨ttingen, Germany,
1997.
2
or w = [s (I) + (0.0810 P)2 + 2.0463 P]-1 (3i) and P = (|Fo|2 +
2|Fc|2)/3. f , f ¢ and f ¢¢ were taken from International Tables of
22 International Tables of X-Ray Crystallography, Vol.IV, Kynoch Press,
X-ray crystallography.22 All hydrogen atoms were computed and
Birmingham, UK, (1974) pp 99–100, 149.
9438 | Dalton Trans., 2011, 40, 9431–9438
This journal is
The Royal Society of Chemistry 2011
©