ORGANIC
LETTERS
2006
Vol. 8, No. 26
5983-5986
Efficient and Stereoselective Synthesis
of Allylic Ethers and Alcohols
Jirˇ´ı Posp´ısˇil and Istva´n E. Marko´*
De´partement de Chimie, UniVersite´ catholique de LouVain, Baˆtiment LaVoisier,
Place Louis Pasteur 1, B-1348 LouVain-la-NeuVe, Belgium
Received October 3, 2006
ABSTRACT
A short and efficient synthesis of allylic TBS ethers and allylic alcohols has been developed, based upon a unique Kocienski−Julia olefination
reaction. Allylic alcohols and allylic ethers are obtained in good to excellent yields and with high (E)-selectivity. The conditions are mild and
the procedure is broadly applicable.
Allylic alcohols are important building blocks in synthetic
organic chemistry, being easily transformed into useful
epoxides,1 R,â-unsaturated aldehydes,2 carboxylic acid de-
rivatives,3 and polyenes.4 Their synthesis usually entails the
reaction of an aldehyde 1 with a stabilized Wittig (2a) or
Horner-Wadsworth-Emmons (2b) reagent5 followed by the
subsequent reduction of the resulting R,â-unsaturated ester
3 (Scheme 1). Surprisingly, even though the transformation
To the best of our knowledge, the only way to transform
aldehydes into allylic alcohols in a single step involves the
use of the â-hydroxy phosphonium salt 5. When reacted with
aldehyde 1, in the presence of an excess of base, salt 5 affords
the desired allylic alcohol 4 (Scheme 2).7 Disappointingly,
this olefination reaction proceeds with poor to moderate
yields, presumably due to the low stability of the generated
phosphonium ylide.6b,c
(1) (a) Johnson, A. A.; Sharpless, K. B. ComprehensiVe Organic
Synthesis; Pergamon Press: Oxford, UK, 1990; Vol. 7. (b) Finn, M. G.;
Sharpless, K. B. Asymmetric synthesis; Morrison, J. D., Ed.; Academic
Press: New York, 1985; Vol. 5. (c) Burns, C. J.; Martin, C. A.; Sharpless,
K. B. J. Org. Chem. 1989, 54, 2826.
Scheme 1. Synthesis of Allylic Alcohols
(2) (a) Lee, D. G. Oxidation; Augustine, R. L., Ed.; Marcel Dekker: New
York, 1969; Vol 1. (b) Ball, S.; Goodwin, T. W.; Morton, R. A. Biochem.
J. 1948, 42, 516.
(3) Corey, E. J.; Gilman, N, W.; Ganem, B. E. J. Am. Chem. Soc. 1968,
90, 5616.
(4) Catalan, J.; Hopf, H.; Mlynek, C.; Klein, D.; Kilickiran, P. Chem.
Eur. J. 2005, 11, 3915.
(5) For an extensive review on phosphorus-based olefination methods,
see: Maryanoff, B. E.; Reitz, A. B. Chem. ReV. 1989, 89, 863. For recent
examples see: (a) Christoph, G.; Hoppe, D. Org. Lett. 2002, 4, 2189.(b)
Ding, P.; Miller, M. J.; Chen, Y.; Helquist, P.; Oliver, A. J.; Wiest, O.
Org. Lett. 2004, 6, 1805.
(6) (a) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J.
Am. Chem. Soc. 2003, 125, 11360. (b) Connon, S. J.; Blechert, S. Angew.
Chem., Int. Ed. 2003, 42, 1900.
(7) (a) Schlosser, M. Angew. Chem., Int. Ed. 1968, 7, 650. (b) Schlosser,
M.; Christmann, F. K.; Piskala, A.; Coffinet, D. Synlett 1971, 29. (c) Corey,
E. J.; Shirahama, H.; Yamamoto, H.; Terashima, S.; Venkateswarlu, A.;
Schaaf, T. K. J. Am. Chem. Soc. 1971, 93, 1490. (d) Maryanoff, B. E.;
Reitz, A. B.; Duhl-Emswiler, B. A. J. Am Chem. Soc. 1985, 107, 217.
of aldehydes into the corresponding allylic alcohols is often
encountered in total synthesis, this two-step sequence is still
classically employed. To reach the corresponding allylic
ethers, a third step is required.
Recently, the synthesis of allylic alcohols, ethers, and
halides was also accomplished via olefination/cross-metath-
esis protocol.6
10.1021/ol062433y CCC: $33.50
© 2006 American Chemical Society
Published on Web 11/29/2006