Journal of the American Chemical Society
ARTICLE
SNAP- and CLIP-Tag Labeling on the Cell Surface of HEK
293T Cells. Twenty-four hours after transfection, HEK 293T cells were
labeled with a solution of 2 μM of the corresponding BG derivative and
10 μM of the corresponding O2-benzylcytosine (BC) derivative in
Hank’s buffered salt solution (HBSS) complemented with 10 mg/mL
BSA for 10 min at room temperature. After being labeled, cells were
washed four times with HBSS.
Confocal Microscopy. Images of HEK 293T cells labeled with
CLIP-Surface 547 and with SNAP-Surface 647 were taken using a Zeiss
LSM 700 confocal microscope equipped with a 40Â plan Apochromat
1.3 numerical aperture (NA) oil immersion objective lens. The imaging
was performed using a 555 nm laser line for excitation of DY-547 and a
639 nm laser line for excitation of DY-647. Fluorescence was collected at
400À620 nm and at 620À700 nm for DY-547 and DY-647, respectively.
The settings for scanning were: Â2 zoom, image format 1024 Â 1024
pixels, pinhole 1Airy unit (AU), average 16 frames.
Wide-Field Microscopy and Live Cell FRET Imaging. Glass
coverslips with labeled HEK 293T cells were transferred to a Warner
imaging chamber (RC-20). Perfusion of the chamber was performed
gravity-fed at a flow rate of 0.5 mL/min. Time-course experiments of
sensor imaging were performed using a Leica LAS AF 7000 wide-field
microscope equipped with a 40Â plan Apochromat 1.25 NA oil
immersion objective lens. A xenon arc lamp was used for imaging of
the HEK 293T cells. For each frame, the two channels (donor and
FRET) were measured consecutively with an interval of 30 ms between
the two emission channels. The following filter sets were used for the
FRET ratio imaging: for DY-547/Cy5, excitation at 530 nm (bandwidth
35 nm), emission at 580 nm (bandwidth 40 nm) (DY-547) and at
700 nm (bandwidth 72 nm) (Cy5); for Alexa Fluor 488/DY-547, excitation
at 470 nm (bandwidth 40 nm), emission at 520 nm (bandwidth 40 nm)
(Alexa Fluor 488) and at 605 (bandwidth 70 nm) (DY-547); for Alexa
Fluor 488/Alexa Fluor 594, excitation at 470 (bandwidth 40 nm),
emission at 520 nm (bandwidth 40 nm) (Alexa Fluor 488) and at
632 nm (bandwidth 60 nm) (Alexa Fluor 594). If not indicated
otherwise, the image size was 293 μM Â 293 μM, and an average of 5
cells per image were analyzed for the intensity ratio plots.
’ REFERENCES
(1) Wishart, D. S.;; et al. Nucleic Acids Res. 2009, 37, D603–D610.
(2) Sassone-Corsi, P.; Nakahata, Y.; Sahar, S.; Astarita, G.; Kaluzova,
M. Science 2009, 324 (5927), 654–657.
(3) Zhang, J.; Newman, R. H.; Fosbrink, M. D. Chem. Rev. 2011,
111 (5), 3614–3666.
(4) Breaker, R. R. Nature 2004, 432 (7019), 838–845.
(5) Navani, N. K.; Li, Y. F. Curr. Opin. Chem. Biol. 2006, 10 (3),
272–281.
(6) Ibraheem, A.; Campbell, R. E. Curr. Opin. Chem. Biol. 2010, 14 (1),
30–36.
(7) Wiechert, W.; Schweissgut, O.; Takanaga, H.; Frommer, W.
Curr. Opin. Plant Biol. 2007, 10 (3), 323–330.
(8) Okumoto, S. Curr. Opin. Biotechnol. 2010, 21 (1), 45–54.
(9) Fehr, M.; Takanaga, H.; Ehrhardt, D.; Frommer, W. Mol. Cell.
Biol. 2005, 25 (24), 11102–11112.
(10) Hires, S.; Zhu, Y.; Tsien, R. Proc. Natl. Acad. Sci. U.S.A. 2008,
105 (11), 4411–4416.
(11) Lager, I.; Looger, L.; Hilpert, M.; Lalonde, S.; Frommer, W.
J. Biol. Chem. 2006, 281 (41), 30875–30883.
(12) Okumoto, S.; Looger, L.; Micheva, K.; Reimer, R.; Smith, S.;
Frommer, W. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (24), 8740–8745.
(13) Medintz, I. Trends Biotechnol. 2006, 24 (12), 539–542.
(14) Deuschle, K.; Fehr, M.; Hilpert, M.; Lager, I.; Lalonde, S.;
Looger, L.; Okumoto, S.; Persson, J.; Schmidt, A.; Frommer, W.
Cytometry, Part A 2005, 64A (1), 3–9.
(15) Brun, M. A.; Tan, K. T.; Nakata, E.; Hinner, M. J.; Johnsson, K.
J. Am. Chem. Soc. 2009, 131 (16), 5873–5884.
(16) Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel,
H.; Johnsson, K. Nat. Biotechnol. 2003, 21 (1), 86–89.
(17) Keppler, A.; Arrivoli, C.; Sironi, L.; Ellenberg, J. Biotechniques
2006, 41, (2), 167.
(18) Lavis, L.; Raines, R. ACS Chem. Biol. 2008, 3 (3), 142–155.
(19) Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.;
Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M. Chem. Rev. 2008, 108
(3), 946–1051.
(20) Campbell, R. E. Anal. Chem. 2009, 81 (15), 5972–5979.
(21) Nguyen, A. W.; Daugherty, P. S. Nat. Biotechnol. 2005, 23 (3),
355–360.
(22) Ouyang, M. X.; Sun, J.; Chien, S.; Wang, Y. X. Proc. Natl. Acad.
Sci. U.S.A. 2008, 105 (38), 14353–14358.
(23) Golynskiy, M. V.; Rurup, W. F.; Merkx, M. ChemBioChem
2010, 11 (16), 2264–2267.
(24) Evers, T.; van Dongen, E.; Faesen, A.; Meijer, E.; Merkx, M.
Biochemistry 2006, 45 (44), 13183–13192.
(25) Arora, P. S.; Ansari, A. Z.; Best, T. P.; Ptashne, M.; Dervan, P. B.
J. Am. Chem. Soc. 2002, 124 (44), 13067–13071.
(26) Stryer, L.; Haugland, R. P. Proc. Natl. Acad. Sci. U.S.A. 1967, 58,
(2), 719.
’ ASSOCIATED CONTENT
S
Supporting Information. Synthetic procedures, charac-
b
terizations of the sensor proteins on the cell surface and in vitro,
and complete ref 1. Additional figures and tables. This material is
’ AUTHOR INFORMATION
(27) Schuler, B.; Lipman, E. A.; Steinbach, P. J.; Kumke, M.; Eaton,
W. A. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (8), 2754–2759.
(28) Aronsson, G.; Martensson, L. G.; Carlsson, U.; Jonsson, B. H.
Biochemistry 1995, 34 (7), 2153–2162.
(29) Vince, J. W.; Carlsson, U.; Reithmeier, R. A. F. Biochemistry
2000, 39 (44), 13344–13349.
Corresponding Author
kai.johnsson@epfl.ch
Present Addresses
†Department of Chemistry, National Tsing Hua University,
Hsinchu 30013, Taiwan.
‡Institute for Molecules and Materials, Department of Organic
Chemistry, Radboud University Nijmegen, 6525 AJ Nijmegen,
The Netherlands.
’ ACKNOWLEDGMENT
The authors thank Dr. M.J. Hinner, Dr. G. Lukinavicius, and
A. Schena for helpful discussions and Dr. D. Maurel for technical
assistance. This work was supported by the Swiss National
Science Foundation.
16242
dx.doi.org/10.1021/ja206915m |J. Am. Chem. Soc. 2011, 133, 16235–16242