Inorganic Chemistry
ARTICLE
According to the promising behavior of our first series of
compounds, a further generation based on the same frameworks
was devised. Importantly, the entire structure was likely a
valuable contribution to targeting Aβ while simple structural
modifications could improve their interaction and reactivity with
Aβ and metal-Aβ species. Here, we focus on two compounds that
serve as an extension to our previous studies of stilbene-like
molecules; these studies supplement our understanding of how
simple modifications such as the inclusion of two nitrogen atoms
for metal chelation and the presence or absence of the dimethy-
lamino functionality can influence interaction/reactivity. The
bifunctionality (metal chelation and Aβ interaction) of the
compounds (L1-a and L1-b) was verified by spectroscopic and
other methods including UVꢀvis, high-resolution 2D NMR, and
X-ray crystallography. Further biochemical studies displayed the
potential direct interaction of our small molecules with metal-Aβ
species through their ability to regulate reactivity (metal-induced
Aβ aggregation and neurotoxicity) in vitro and in living cells.
Together with our previous work, the studies presented here
validate the selection of the stilbene compound as a model
interaction framework as it importantly interacts with Aβ pep-
tides in various aggregated forms and displays minimal toxicity in
human neuroblastoma cells. In our studies, the structural moi-
eties, such as dimethylamino functionality, are crucial parameters
for a structure-interaction-reactivity relationship that can be
applied to develop and tune small molecules that can target
metal-Aβ species allowing for anti-Aβ aggregation, ROS regula-
tion, and modulation of metal-Aβ neurotoxicity. Continuing
investigations on this theme will be conducted to advance the
construction and study of suitable chemical tools for under-
standing metal-Aβ-involved processes in chemistry and biology
as well as potential therapeutic agents for AD.
(2) Jakob-Roetne, R.; Jacobsen, H. Angew. Chem., Int. Ed. 2009, 48,
3030–3059.
(3) Hardy, J.; Selkoe, D. J. Science 2002, 297, 353–356.
(4) Haass, C.; Selkoe, D. J. Nat. Rev. Mol. Cell Biol. 2007, 8, 101–112.
(5) DeToma, A. S.; Salamekh, S.; Ramamoorthy, A.; Lim, M. H.
Chem. Soc. Rev. 2012, DOI: 10.1039/c1cs15112f.
(6) Roychaudhuri, R.; Yang, M.; Hoshi, M. M.; Teplow, D. B. J. Biol.
Chem. 2009, 284, 4749–4753.
(7) Miller, Y.; Ma, B.; Nussinov, R. Chem. Rev. 2010, 110, 4820–4838.
(8) Lovell, M. A.; Robertson, J. D.; Teesdale, W. J.; Campbell, J. L.;
Markesbery, W. R. J. Neurol. Sci. 1998, 158, 47–52.
(9) Miller, L. M.; Wang, Q.; Telivala, T. P.; Smith, R. J.; Lanzirotti,
A.; Miklossy, J. J. Struct. Biol. 2006, 155, 30–37.
(10) Rauk, A. Chem. Soc. Rev. 2009, 38, 2698–2715.
(11) Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Chem.
Rev. 2006, 106, 1995–2044.
(12) Zatta, P.; Drago, D.; Bolognin, S.; Sensi, S. L. Trends Pharmacol.
Sci. 2009, 30, 346–355.
(13) Faller, P.; Hureau, C. Dalton Trans. 2009, 1080–1094.
(14) Faller, P. ChemBioChem 2009, 10, 2837–2845.
(15) Scott, L. E.; Orvig, C. Chem. Rev. 2009, 109, 4885–4910.
(16) Bush, A. I.; Tanzi, R. E. Neurotherapeutics 2008, 5, 421–432.
(17) Barnham, K. J.; Curtain, C. C.; Bush, A. I. Protein Rev. 2007,
6, 31–47.
(18) Karr, J. W.; Kaupp, L. J.; Szalai, V. A. J. Am. Chem. Soc. 2004,
126, 13534–13538.
(19) Karr, J. W.; Szalai, V. A. Biochemistry 2008, 47, 5006–5016.
(20) Danielsson, J.; Pierattelli, R.; Banci, L.; Gr€aslund, A. FEBS J.
2007, 274, 46–59.
(21) Cappai, R.; Barnham, K. J. Neurochem. Res. 2008, 33, 526–532.
(22) Zhu, X.; Su, B.; Wang, X.; Smith, M. A.; Perry, G. Cell. Mol. Life
Sci. 2007, 64, 2202–2210.
(23) Hureau, C.; Faller, P. Biochimie 2009, 91, 1212–1217.
(24) Molina-Holgado, F.; Hider, R. C.; Gaeta, A.; Williams, R.;
Francis, P. BioMetals 2007, 20, 639–654.
(25) Huang, X.; Moir, R. D.; Tanzi, R. E.; Bush, A. I.; Rogers, J. T.
Ann. N.Y. Acad. Sci. 2004, 1012, 153–163.
’ ASSOCIATED CONTENT
(26) Cherny, R. A.; Atwood, C. S.; Xilinas, M. E.; Gray, D. N.;
Jones, W. D.; McLean, C. A.; Barnham, K. J.; Volitakis, I.; Fraser, F. W.;
Kim, Y.; Huang, X.; Goldstein, L. E.; Moir, R. D.; Lim, J. T.; Beyreuther,
K.; Zheng, H.; Tanzi, R. E.; Masters, C. L.; Bush, A. I. Neuron 2001,
30, 665–676.
S
Supporting Information. Tables S1 and S2, Figures
b
S1ꢀS7, aswellasX-raycrystallographicfile (CIF file). This material
(27) Adlard, P. A.; Cherny, R. A.; Finkelstein, D. I.; Gautier, E.;
Robb, E.; Cortes, M.; Volitakis, I.; Liu, X.; Smith, J. P.; Perez, K.;
Laughton, K.; Li, Q.-X.; Charman, S. A.; Nicolazzo, J. A.; Wilkins, S.;
Deleva, K.; Lynch, T.; Kok, G.; Ritchie, C. W.; Tanzi, R. E.; Cappai, R.;
Masters, C. L.; Barnham, K. J.; Bush, A. I. Neuron 2008, 59, 43–55.
(28) Perez, L. R.; Franz, K. J. Dalton Trans. 2010, 39, 2177–2187.
(29) Dickens, M. G.; Franz, K. J. ChemBioChem 2010, 11, 59–62.
(30) Boldron, C.; Van der Auwera, I.; Deraeve, C.; Gornitzka, H.;
Wera, S.; Pitiꢀe, M.; Van Leuven, F.; Meunier, B. ChemBioChem 2005,
6, 1976–1980.
(31) Deraeve, C.; Boldron, C.; Maraval, A.; Mazarguil, H.; Gornitzka,
H.; Vendier, L.; Pitiꢀe, M.; Meunier, B. Chem.—Eur. J. 2008, 14,
682–696.
(32) Deraeve, C.; Pitie, M.; Meunier, B. J. Inorg. Biochem. 2006, 100,
2117–2126.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: mhlim@umich.edu.
’ ACKNOWLEDGMENT
This work was supported by start-up funding from the Uni-
versity of Michigan, the Alzheimer’s Art Quilt Initiative (AAQI), as
well as the Alzheimer’s Association (NIRG-10-172326) (to M.H.L.)
and NIH (DK078885 and RR023597 to A.R.). We acknowledge
funding from NSF Grant CHE-0840456 for X-ray instrumenta-
tion. J.J.B. is grateful for the Murrill Memorial Scholarship from
the Department of Chemistry at the University of Michigan. K.N.
conducted this work as an intern from the Western Reserve
Academy, OH, U.S.A. and is currently at Hankuk Academy Of
Foreign Studies, Korea. We thank Kermit Johnson, Dr. Sub-
ramanian Vivekanandan, and Dr. Ravi P. R. Nanga for help with
900 MHz NMR experiments and data analysis, as well as Allana
Mancino and Nathan Merrill for experimental assistance.
(33) Hureau, C.; Sasaki, I.; Gras, E.; Faller, P. ChemBioChem 2010,
11, 950–953.
(34) Braymer, J. J.; DeToma, A. S.; Choi, J.-S.; Ko, K. S.; Lim, M. H.
Int. J. Alzheimers Dis. 2011, 2011, 623051.
(35) Dedeoglu, A.; Cormier, K.; Payton, S.; Tseitlin, K. A.; Kremsky,
J. N.; Lai, L.; Li, X.; Moir, R. D.; Tanzi, R. E.; Bush, A. I.; Kowall, N. W.;
Rogers, J. T.; Huang, X. Exp. Gerontol. 2004, 39, 1641–1649.
(36) Rodríguez-Rodríguez, C.; Sꢀanchez de Groot, N.; Rimola, A.;
ꢀ
ꢀ
Alvarez-Larena, A.; Lloveras, V.; Vidal-Gancedo, J.; Ventura, S.; Vendrell,
J.; Sodupe, M.; Gonzꢀalez-Duarte, P. J. Am. Chem. Soc. 2009, 131,
1436–1451.
’ REFERENCES
10733
dx.doi.org/10.1021/ic2012205 |Inorg. Chem. 2011, 50, 10724–10734