174
Md. Delwar H. Sikder et al. / Inorganica Chimica Acta 376 (2011) 170–174
[8] M. Shieh, M.-H. Hsu, J. Cluster Sci. 15 (2004) 91.
hydride ligands are fluxional in solution. A similar situation was
encountered for 7, VT-1H NMR spectra revealing the rapid ex-
change of the hydrides between the non-diphosphine bridged
ruthenium–ruthenium edges on the NMR timescale [57]. The Ru–
P bond distances involving the terminal phosphine [Ru(3)–P(3)
2.323(1) Å] and the bridging dppm [Ru(1)–P(1) 2.336(1) and
Ru(2)–P(2) 2.329(1) Å] are very similar to those found in 1. Com-
pound 8 is structurally similar to that of 7 except in place of one
carbonyl there is a terminal tri(2-thienyl)phosphine ligand on re-
mote ruthenium atom, Ru(3). The FAB mass spectrum of com-
pound 8 exhibit a parent molecular ion at m/z 1171 and other
ions due to stepwise loss of six carbonyl groups which are also con-
sistent with the solid state structure.
[9] T. Akter, N. Begum, D.T. Haworth, D.W. Bennett, S.E. Kabir, M.A. Miah, N.C.
Sarker, T.A. Siddiquee, E. Rosenberg, J. Organomet. Chem. 689 (2004) 2571.
[10] S.E. Kabir, S.J. Ahmed, M.I. Hyder, M.A. Miah, D.W. Bennett, D.T. Haworth, T.A.
Siddiquee, E. Rosenberg, J. Organomet. Chem. 689 (2004) 3412.
[11] M.I. Hyder, G.M.G. Hossain, S.E. Kabir, M.A. Miah, Polyhedron 24 (2005) 872.
[12] H. Akter, A.J. Deeming, G.M.G. Hossain, S.E. Kabir, D.N. Mondol, E. Nordlander,
A. Sharmin, D.A. Tocher, J. Organomet. Chem. 690 (2005) 4628.
[13] N. Begum, M.I. Hyder, M.R. Hassan, S.E. Kabir, D.W. Bennett, D.T. Haworth, T.A.
Siddiquee, D. Rokhsana, A. Sharmin, E. Rosenberg, Organometallics 27 (2008)
1550.
[14] M.L. Steigerwald, Polyhedron 13 (1994) 1245.
[15] R.D. Adams, M. Tasi, J. Cluster Sci. 1 (1990) 249.
[16] R.D. Adams, Polyhedron 4 (1985) 2003.
[17] R.D. Adams, I.T. Horvath, L.W. Yang, J. Am. Chem. Soc. 105 (1983) 1533.
[18] R.D. Adams, I.T. Horvath, P. Mathur, B.E. Segmuller, Organometallics 2 (1983)
1078.
[19] R.D. Adams, Z. Dawoodi, D.F. Foust, Organometallics 1 (1982) 411.
[20] D. Cauzzi, C. Graiff, G. Predieri, A. Tiripicchio, P. Braunstein, L.A. Oro, P.R.
Raithby (Eds.), Metal Clusters in Chemistry, vol. 3, VCH, Weinheim, 1999, p.
193.
4. Conclusions
[21] P. Baistrocchi, D. Cauzzi, M. Lanfranchi, G. Predieri, A. Tiripicchio, M.T.
Camellini, Inorg. Chim. Acta 235 (1995) 173.
[22] P. Baistrocchi, M. Careri, D. Cauzzi, C. Graiff, M. Lanfranchi, P. Manini, G.
Predieri, A. Tiripicchio, Inorg. Chim. Acta 252 (1996) 367.
[23] G. Hogarth, N.J. Taylor, A.J. Carty, A. Meyer, J. Chem. Soc., Chem. Commun.
(1988) 834.
[24] D. Cauzzi, C. Graiff, C. Massera, G. Predieri, A. Tiripicchio, Inorg. Chim. Acta
300–302 (2000) 259.
[25] R.D. Adams, O.-S. Kwon, S. Sanyl, J. Organomet. Chem. 681 (2003) 258.
[26] P. Braunstein, C. Graiff, C. Massera, G. Predieri, J. Rose, Inorg. Chem. 41 (2002)
1372.
[27] D. Cauzzi, C. Graiff, M. Lanfranchi, G. Predieri, A. Tiripicchio, J. Organomet.
Chem. 536–537 (1995) 497.
[28] D. Cauzzi, C. Graiff, M. Lanfranchi, G. Predieri, A. Tiripicchio, J. Chem. Soc.,
Dalton Trans. (1995) 2321.
[29] D. Cauzzi, C. Graiff, M. Lanfranchi, G. Mori, G. Predieri, A. Tiripicchio, J. Chem.
Soc., Dalton Trans. (1998) 321.
[30] S.E. Kabir, S. Pervin, N.C. Sarker, A. Yesmin, A. Sharmin, T.A. Siddiquee, D.T.
Haworth, D.W. Bennett, K.M.A. Malik, J. Organomet. Chem. 681 (2003) 237.
[31] J. Zhang, W.K. Leong, J. Chem. Soc., Dalton Trans. (2000) 1249.
[32] P.V. Broadhurst, B.F.G. Johnson, J. Lewis, J. Chem. Soc., Dalton Trans. (1982)
1881.
[33] A.J. Arce, P. Arrojo, Y.D. Sanctis, A.J. Deeming, D.J. West, Polyhedron 11 (1992)
1013.
[34] A.J. Arce, P. Arrojo, Y.D. Sanctis, A.J. Deeming, J. Chem. Soc., Chem. Commun.
(1991) 1491.
[35] S.E. Kabir, N. Begum, M.M. Hassan, M.I. Hyder, H. Nur, D.W. Bennett, T.A.
Siddiquee, D.T. Haworth, E. Rosenberg, J. Organomet. Chem. 689 (2004) 1569.
[36] S.E. Kabir, M.S. Saha, D.A. Tocher, G.M.G. Hossain, E. Rosenberg, J. Organomet.
Chem. 691 (2006) 97.
Introduction of the tri(thienyl)phosphine ligand onto [Ru3
(CO)10(l-dppm)] leads to an increase in electron-density at the
triruthenium centre thus facilitating reactions with group 16 ele-
ments in order to form chalogenide-capped clusters, [Ru3
(CO)6(
known propensity of both of the phosphine ligands in [Ru3
(CO)9{P(C4H3S)3}( -dppm)] (1) to undergo secondary trans-
l3-CO){P(C4H3S)3}(l-dppm)(l3-E)] (E = O, S, Se). Given the
l
formations resulting from both carbon–hydrogen and carbon–
phosphorus bond activation it is slightly surprising that no such
rearrangements were observed during these studies. This sug-
gests that chalcogen reduction is relatively rapid and once the
capping chalcogenide is in place then no further rearrangements
occur. This may be due to the removal of electron density from
the cluster core, which in turn deactivates the system towards
further oxidative-addition, or as a result of the removal of re-
quired vacant coordination sites with the introduction of capping
ligands. It is not yet clear whether it is the introduction of the
tri(thienyl)phosphine which specifically leads to such behavior
or whether related phosphine-substituted complexes [Ru3
(CO)9(PR3)(l-dppm)] behave in a similar fashion. Studies to deter-
mine this are on-going, especially with respect to the relatively
facile addition of molecular oxygen, which remains an unusual
transformation in low-valent cluster chemistry [39–48,59].
[37] C.A. Hunter, Chem. Soc. Rev. (1994) 101.
[38] B.F.G. Johnson, J. Lewis, P.G. Lodge, P.R. Raithby, K. Henrick, M. McPartlin, J.
Chem. Soc., Chem. Commun. (1979) 719.
[39] J.T. Park, J.R. Shapley, C. Bueno, J.W. Ziller, M.R. Churchill, Organometallics 7
(1988) 2307.
5. Supplementary material
Crystallographic data for the structural analyses have been
deposited with the Cambridge Crystallographic Data Center, CCDC
No 795599 for compound 2 and 795600 for compound 8. Copies of
this information may be obtained free of charge from the Director,
CCDC, 12 Union Road, Cambridge CB2 1 EZ, UK (Fax: +44 1223
336033; e-mail: deposit@ccdc.cam.ac.uk or URL: http://
[40] L. Xu, K.H. Whitmire, Organometallics 21 (2002) 2581.
[41] J.-H. Gong, D.-K. Hwang, C.-W. Tsay, Y. Chi, S.-M. Peng, G.-H. Lee,
Organometallics 13 (1994) 1720.
[42] M.R. Churchill, C. Bueno, J.T. Park, J.R. Shapley, Inorg. Chem. 23 (1984) 1017.
[43] Y. Chi, L. Hwang, G.-H. Lee, S.-M. Peng, J. Chem. Soc., Chem. Commun. (1988)
1456.
[44] Y. Chi, J.R. Shapley, J. Ziller, M.R. Churchill, Organometallics 6 (1987) 301.
[45] R.J. Goudsmit, B.F.G. Johnson, J. Lewis, P.R. Raithby, K.H. Whitmire, J. Chem.
Soc., Chem. Commun. (1983) 246.
[46] G. Lavigne, N. Lugan, J.-J. Bonnet, Nouv. J. Chim. 5 (1981) 423.
[47] S. Ghosh, G. Hogarth, S.E. Kabir, M.A. Miah, L. Salassa, S. Sultana, C. Garino,
Organometallics 28 (2009) 7047.
Acknowledgement
[48] A. Colombie, J.J. Bonnet, P. Fompeyrine, G. Lavigne, S. Sunshine,
Organometallics 5 (1986) 1154.
We are grateful to the Ministry of Science and Information &
Communication Technology, Government of the People’s Republic
of Bangladesh for financial support.
[49] S.E. Kabir, G. Hogarth, Coord. Chem. Rev. 253 (2009) 1285.
[50] M.N. Uddin, N. Begum, M.R. Hassan, G. Hogarth, S.E. Kabir, M.A. Miah, E.
Nordlander, D.A. Tocher, J. Chem. Soc., Dalton Trans. (2008) 6219.
[51] SMART and SAINT software for CCD diffractometers, version 6.1, Madison, WI
(2000).
References
[52] G.M. Sheldrick, SHELXTL PLUS, version 6.10, Bruker AXS, Madison, W1 (2000).
[53] M.I. Bruce, B.K. Nicholson, M.L. Williams, Inorg. Synth. 26 (1990) 265.
[54] D.M.P. Mingos, Acc. Chem. Res. 17 (1984) 311.
[1] D. Fenske, J.F. Corrigan, in: P. Braunstein, L.A. Oro, P.R. Raithby (Eds.), Metal
Clusters in Chemistry, vol. 3, VCH, Weinheim, 1999, p. 1302.
[2] S. Ulvenlund, A. Bengtsson-Kloo, in: P. Braunstein, L.A. Oro, P.R. Raithby (Eds.),
Metal Clusters in Chemistry, vol. 1, VCH, Weinheim, 1999, p. 561.
[3] M.L. Steigerwald, T. Siegrist, E.M. Gyorgy, B. Hessen, Y.-U. Kwon, S.M. Tanzler,
Inorg. Chem. 33 (1994) 3389.
[4] G. Longoni, M.C. Japalucci, Clusters and Colloids, VCH, Weinheim, 1994. p. 132.
[5] K.H. Whitmire, J. Coord. Chem. 17 (1988) 95.
[6] T. Shibihara, Coord. Chem. Rev. 123 (1993) 73.
ꢀ
[55] Crystallographic data of 5: space group P1, with a = 12.952(4) Å,
b = 19.365(6) Å, c = 21.712(6) Å,
a = 74.708(6)°, b = 89.961(6)°, c = 70.581(6)°.
[56] S.J. Ahmed, M.I. Hyder, S.E. Kabir, M.A. Miah, A.J. Deeming, E. Nordlander, J.
Organomet. Chem. 691 (2006) 309.
[57] M.I. Hyder, N. Begum, M.D.H. Sikder, G.M.G. Hossain, G. Hogarth, S.E. Kabir, C.J.
Richard, J. Organomet. Chem. 694 (2009) 304.
[58] R.G. Teller, R. Bau, Struct. Bonding 41 (1981) 1.
[59] G. Hogarth, S.E. Kabir, E. Nordlander, Dalton Trans. 39 (2010) 6153.
[7] S.W.A. Fong, T.S.A. Hor, J. Chem. Soc., Dalton Trans. (1999) 639.