Journal of the American Chemical Society
COMMUNICATION
The observed vesicles are on average ∼400 nm in diameter.
DLS experiments in solution (THF and THF/H2O) have also
demonstrated the formation of aggregates (Table S1). However,
the analysis of these data has not allowed defining the particular
morphology of the aggregates forming in solution. It should be
reasonable to think that vesicles are also formed.
’ ACKNOWLEDGMENT
Financial support by the MICINN of Spain (CTQ2008-
00795/BQU, CTQ2008-01694), the CAM (MADRISOLAR-2
S2009/PPQ-1533), and Consolider-Ingenio CSD2007-00010,
Nanociencia Molecular), and the EU (FUNMOL FP7-212942-1)
is greatly appreciated. A.M. thanks the MICINN for an FPI
Studentship. This Communication is dedicated to the memory of
Prof. Rafael Suau.
Analysis of DF-4 and DF-8 on carbon-coated grids by
transmission electron microscopy (TEM) showed the formation
of hollow vesicles with diameters varying from 200À300 nm to
a few micrometers (Figure S8). Vesicles resulting from DF-4 are
bigger than those obtained from DF-8, probably as a conse-
quence of a more expanded conical shape for the former.
To get a deeper understanding of the structure of these
spherical particles, we characterized them by X-ray diffraction
(XRD) and small-angle X-ray scattering (SAXS). A sample
prepared using the same method as in AFM and TEM analyses
was employed for XRD characterization. The XRD pattern of
DF-8 showed a broad peak at 2θ = 8°, corresponding to a d
spacing of ∼1 nm (Figure 3b and Figure S6). This distance
fits well with the size of a molecule of fullerene, and therefore, it
could be accounting for the disposition of fullerene molecules
packed in contact with each other. This tight contact of
the fullerene moieties in the vesicle membranes has been justified
by the high cohesive forces between C60 molecules.9c,15 In the
corresponding intensity profile as a function of the scattering
vector (q) obtained from SAXS (Figure 3b and Figure S7), we
can see two scattering peaks at q1 = 0.47 nmÀ1 and q2 = 0.95 nmÀ1
which suggest a structure with a period of d = 2π/qmax = 13.4 nm.
This value is consistent with the size estimated for four molecules of
DF-8. The q2 value observed corresponds to a distance of 6.6 nm,
which indicates the presence of two molecules of dendroful-
lerene. These data suggest that the shell of the vesicles is
probably formed by a multilamellar packing of the molecules
where the bilayers interact through H-bonding between polar
carboxylic acid groups (Figure 3b).
In conclusion, we have described a very efficient procedure to
obtain amphiphilic fullerene based molecules by using a click
chemistry methodology. We have studied the aggregation beha-
vior of these amphiphiles and found that the morphology of the
supramolecular architectures formed varies depending on the
surface and on the concentration of the samples analyzed.16 This
kind of aggregation could find applications on the design of new
functional materials and in biological sciences. Work is currently
in progress to determine the interest of these systems in the
preparation of photovoltaic devices, where organization and
morphology of the active materials at the nanometer scale is a
key issue.5d
’ REFERENCES
(1) (a) Nakamura, E.; Isobe, H. Chem. Rec. 2010, 10, 260–270.
(b) Medicinal Chemistry and Pharmacological Potential of Fullerenes
and Carbon Nanotubes; Cataldo, F., Da Ros, T., Eds.; Springer: Berlin,
2008. (c) Nakamura, E.; Isobe, H. Acc. Chem. Res. 2003, 36, 807–815.
(d) Da Ros, T.; Prato, M. Chem. Commun. 1999, 663–669.
(2) (a) Montellano Lꢀopez, A.; Mateo-Alonso, A.; Prato, M. J. Mater.
Chem. 2011, 21, 1305–1318. (b) Giacalone, F.; Martín, N. Adv. Mater.
2010, 22, 4220–4248. (c) Guldi, D. M.; Illescas, B. M.; Atienza, C. M.;
Wielopolski, M.; Martín, N. Chem. Soc. Rev. 2009, 38, 1587–1597.
(3) (a) Beuerle, F.; Hirsch, A. Chem.—Eur. J. 2009, 15, 7434–7446.
(b) Itoh, T.; Mishiro, M.; Matsumoto, K.; Hayase, S.; Kawatsura, M.;
Morimoto, M. Tetrahedron 2008, 64, 1823–1828. (c) Yang, J.; Alemany,
L. B.; Driver, J.; Hartgerink, J. D.; Barron, A. R. Chem.—Eur. J. 2007,
13, 2530–2545. (d) Kunsagi-Mate, S.; Szabo, K.; Bitter, I.; Nagy, G.;
Kollar, L. Tetrahedron Lett. 2004, 45, 1387–1390. (e) Rio, Y.;
Nierengarten, J.-F. Tetrahedron Lett. 2002, 43, 4321–4324. (f) Bergamin,
M.; Da Ros, T.; Spalluto, G.; Boutorine, A.; Prato, M. Chem. Commun.
2001, 17–18. (g) Murthy, C. N.; Geckeler, K. E. Chem. Commun.
2001, 1194–1195. (h) Djojo, F.; Hirsch, A. Chem.—Eur. J. 1998,
4, 344–356.
(4) (a) Kahnt, A.; Guldi, D. M.; Brettreich, M.; Hartnagel, U.;
Hirsch, A. J. Mater. Chem. 2010, 20, 83–89. (b) Witte, P.; Beuerle, F.;
Hartnagel, U.; Lebovitz, R.; Savouchkina, A.; Sali, S.; Guldi, D. M.;
Chronakisd, N.; Hirsch, A. Org. Biomol. Chem. 2007, 5, 3599–3613.
(c) Partha, R.; Lackey, M.; Hirsch, A.; Casscells, S. W.; Conyers, J. L.
J. Nanobiotechnol. 2007, 5, 6. (d) Gallani, J.-L.; Felder, D.; Guillon, D.;
Heinrich, B.; Nierengarten, J.-F. Langmuir 2002, 18, 2908–2913. For
recent reviews, see:(e) Cid Martín, J. J.; Nierengarten, J.-F. In Chemistry
of Nanocarbons; Akasaka, T., Wudl, F., Nagase, S., Eds.; Wiley-VCH:
Weinheim, 2010; pp 73À92. (f) Rosen, B. M.; Wilson, C. J.; Wilson,
D. A.; Peterca, M.; Imam, M. R.; Percec, V. Chem. Rev. 2009, 109,
6275–6540.
(5) (a) Segura, J. L.; Martín, N.; Guldi, D. M. Chem. Soc. Rev. 2005,
34, 31–47. (b) Mallik, A. B.; Locklin, J.; Mannsfeld, S. C. B.; Reese, C.;
Roberts, M. S.; Senatore, M. L.; Zi, H.; Bao, Z. In Organic Field-Effect
Transistors; Bao, Z., Locklin, J., Eds.; CRC Press: Boca Raton, FL, 2007.
(c) Mas-Torrent, M.; Rovira, C. Chem. Soc. Rev. 2008, 37, 827–838.
(d) Delgado, J. L.; Bouit, P.-A.; Filippone, S.; Herranz, M. A.; Martín, N.
Chem. Commun. 2010, 46, 4853–4865. (e) Hasobe, T. Phys. Chem.
Chem. Phys. 2010, 12, 44–57.
(6) Babu, S. S.; M€ohwald, H.; Nakanishi, T. Chem. Soc. Rev. 2010,
39, 4021–4035.
(7) (a) Charvet, R.; Acharya, S.; Hill, J. P.; Akada, M.; Liao, M.; Seki,
S.; Honsho, Y.; Saeki, a.; Ariga, K. J. Am. Chem. Soc. 2009,
131, 18030–18031. (b) Li, W.; Yamamoto, Y.; Fukushima, T.; Saeki,
A.; Seki, S.; Tagawa, S.; Masunaga, H.; Sasaki, S.; Takata, M.; Aida, T.
J. Am. Chem. Soc. 2008, 130, 8886–8887. (c) Tsunashima, R.; Noro, S.-I.;
Akutagawa, T.; Nakamura, T.; Kawakami, H.; Toma, K. Chem.—Eur.
J. 2008, 14, 8169–8176. (d) Kato, H.; B€ottcher, C.; Hirsch, A. Eur. J. Org.
Chem. 2007, 2659–2666. (e) Nakanishi, T.; Ariga, K.; Michinobu, T.;
Yoshida, K.; Takahash, H.; Teranishi, T.; M€ohwald, H.; Kurth, D. G.
Small 2007, 3, 2019–2023. (f) Schade, B.; Ludwig, K.; B€ottcher, C.;
Hartnagel, U.; Hirsch, A. Angew. Chem., Int. Ed. 2007, 46, 4393–4396.
(g) Nakanishi, T.; Schmitt, W.; Michinobu, T.; Kurth, D. G.; Ariga, K.
Chem. Commun. 2005, 5982–5984. (h) Charvet, R.; Jiang, D.-L.; Aida, T.
Chem. Commun. 2004, 2664–2665.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
complete spectroscopic and structural characterization, including
Figures S1ÀS8. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
nazmar@quim.ucm.es; javier.rojo@iiq.csic.es
16760
dx.doi.org/10.1021/ja206769a |J. Am. Chem. Soc. 2011, 133, 16758–16761