Organic Letters
ORCID
Letter
T.; Laursen, B. W.; Lacour, J. Angew. Chem., Int. Ed. 2003, 42, 3162.
(b) Noguchi, H.; Hirose, T.; Yokoyama, S.; Matsuda, K.
CrystEngComm 2016, 18, 7377. (c) Orvik, J. A.; Bunnett, J. F. J.
Am. Chem. Soc. 1970, 92, 2417. (d) Fyfe, C. A.; Damji, S. W. H.; Koll,
A. J. Am. Chem. Soc. 1979, 101, 951.
Notes
(12) As a related study, Zhao, Wang, and coworkers reported that
KHMDS (HMDS = hexamethyldisilazide) mediates amination
reactions of 1-(methylthio)-2-naphthalenecarbonitriles with anilines.
See: (a) Wang, X.; Tang, Y.; Long, C.-Y.; Dong, W.-K.; Li, C.; Xu, X.;
Zhao, W.; Wang, X.-Q. Org. Lett. 2018, 20, 4749. Also see, (b) Wang,
X.; Li, C.; Wang, X.; Wang, Q.; Dong, X.-Q.; Duan, A.; Zhao, W. Org.
Lett. 2018, 20, 4267. Murakami, Yorimitsu, and coworkers showed
that Pd catalyzes aminations of aryl methy sufides with anilines in the
presence of KHMDS; see: (c) Sugahara, T.; Murakami, K.; Yorimitsu,
H.; Osuka, A. Angew. Chem., Int. Ed. 2014, 53, 9329. (d) Pratap, R.;
Yorimitsu, H. Synthesis 2019, 51, 2705.
(13) (a) Schwesinger, R.; Schlemper, H. Angew. Chem., Int. Ed. Engl.
1987, 26, 1167. (b) Schwesinger, R.; Schlemper, H.; Hasenfratz, C.;
Willaredt, J.; Dambacher, T.; Breuer, T.; Ottaway, C.; Fletschinger,
M.; Boele, J.; Fritz, H.; Putzas, D.; Rotter, H. W.; Bordwell, F. G.;
Satish, A. V.; Ji, G.-Z.; Peters, E.-M.; Peters, K.; von Schnering, H. G.;
Walz, L. Liebigs Ann. 1996, 1996, 1055.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by JSPS KAKENHI grant
number 19H03346 (Y.K.), JSPS KAKENHI grant number
17K15419 (M.S.), JSPS KAKENHI grant number 19K06967
(M.S.), the Grant for Basic Science Research Projects from
The Sumitomo Foundation (M.S.), the Yamaguchi Educa-
tional and Scholarship Foundation (M.S.), the NIPPON
SHOKUBAI Award in Synthetic Organic Chemistry, Japan
(M.S.), and also the Platform Project for Supporting Drug
Discovery and Life Science Research funded by Japan Agency
for Medical Research and Development (AMED) (M.S., K.N.-
K., and Y.K.).
(14) (a) Shigeno, M.; Hayashi, K.; Nozawa-Kumada, K.; Kondo, Y.
Chem. - Eur. J. 2019, 25, 6077. (b) Araki, Y.; Kobayashi, K.;
Yonemoto, M. Y.; Kondo. Org. Biomol. Chem. 2011, 9, 78. (c) Hirono,
Y.; Kobayashi, K.; Yonemoto, M.; Kondo, Y. Chem. Commun. 2010,
46, 7623. (d) Kobayashi, K.; Ueno, M.; Naka, H.; Kondo, Y. Chem. -
Eur. J. 2009, 15, 9805. (e) Naka, H.; Koseki, D.; Kondo, Y. Adv. Synth.
Catal. 2008, 350, 1901. (f) Ueno, M.; Yonemoto, M.; Hashimoto, M.;
Wheatley, A. E. H.; Naka, H.; Kondo, Y. Chem. Commun. 2007, 2264.
(g) Imahori, T.; Hori, C.; Kondo, Y. Adv. Synth. Catal. 2004, 346,
1090. (h) Imahori, T.; Kondo, Y. J. Am. Chem. Soc. 2003, 125, 8082.
(15) For the recent studies by other groups, see: (a) Kondoh, A.;
Koda, K.; Terada, M. Org. Lett. 2019, 21, 2277. (b) Luo, C.; Bandar, J.
S. J. Am. Chem. Soc. 2018, 140, 3547. (c) Jardel, D.; Davies, C.;
Peruch, F.; Massip, S.; Bibal, B. Adv. Synth. Catal. 2016, 358, 1110.
(d) Okusu, S.; Hirano, K.; Tokunaga, E.; Shibata, N. ChemistryOpen
2015, 4, 581. (e) Du, G.-F.; Wang, Y.; Gu, C.-Z.; Dai, B.; He, L. RSC
Adv. 2015, 5, 35421. (f) Punirun, T.; Soorukram, D.; Kuhakarn, C.;
Reutrakul, V.; Pohmakotr, M. Eur. J. Org. Chem. 2014, 2014, 4162.
(16) Bordwell, F. G.; Cheng, J.-P.; Ji, G.-Z.; Satish, A. V.; Zhang, X.
J. Am. Chem. Soc. 1991, 113, 9790.
(17) The acidity of the N−H bond of diarylamine 3am is higher
than that of 2m. Thus, in the reaction, t-Bu-P4 deprotonates 3am over
2m to form a stable and low nucleophilic diarylamide anion, because
of which the amination with 2m is considered to be inhibited. Indeed,
when the reaction of 1a and 2a (pKa = 29.5 in dimethyl sulfoxide16)
was carried out in the presence of diphenylamine (pKa = 24.95 in
dimethyl sulfoxide16), only a small amount of product 3aa was formed
(18) Reactions of dialkylamines (pyrrolidine and morpholine) were
also conducted; however, no amination products were obtained
(results not shown).
(19) 4-Methoxybiphenyl was also examined as a substrate, however,
which did not give the amination product (results not shown).
(20) When the reaction of 4b was conducted in dioxane at 120 °C,
5b was formed in a low NMR yield of 10%.
(21) (a) Mamdani, H. T.; Hartley, R. C. Tetrahedron Lett. 2000, 41,
747. (b) Seebach, D.; Beck, A. K.; Studer, A. In Modern Synthetic
Methods, 1995; Ernst, B., Leumann, C., Eds.; VCH: Weinheim,
Germany, 1995; Vol. 7.
(22) Wang, X.; Yang, Q.-X.; Long, C.-Y.; Tan, Y.; Qu, Y.-X.; Su, M.-
H.; Huang, S.-J.; Tan, W.; Wang, X.-Q. Org. Lett. 2019,
REFERENCES
■
(1) (a) Ricci, A. Amino Group Chemistry. From Synthesis to the Life
Sciences; Wiley-VCH Verlag, Weinheim, Germany, 2008. (b) The
Chemistry of Anilines, Parts 1 and 2; Rappoport, Z., Ed.; John Wiley &
Sons: New York, 2007. (c) Schlummer, B.; Scholz, U. Adv. Synth.
Catal. 2004, 346, 1599.
(2) (a) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. (b) Wolfe, J.
P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. L. Acc. Chem. Res. 1998,
31, 805. (c) Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346,
1599.
(3) (a) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48,
6954. (b) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004,
248, 2337. (c) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003,
42, 5400.
(4) (a) Bunnett, J. F.; Zahler, R. E. Chem. Rev. 1951, 49, 273.
(b) Miller, J. Aromatic Nucleophilic Substitution; Elsevier Sci., Ltd.:
Amsterdam, 1968. (c) Terrier, F. Modern Nucleophilic Aromatic
Substitution; John Wiley & Sons, Inc.: Weinheim, Germany, 2013.
(5) (a) Tobisu, M.; Shimasaki, T.; Chatani, N. Chem. Lett. 2009, 38,
710. (b) Tobisu, M.; Yasutome, A.; Yamakawa, K.; Shimasaki, T.;
Chatani, N. Tetrahedron 2012, 68, 5157. Also, see the following
review of nickel-catalyzed transformations of methoxyarenes:
(c) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717.
(6) (a) Tay, N. E. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139,
16100. Aminations of nitro-substituted methoxyarenes proceed by
photochemical and electrochemical reactions. See: (b) Cornelisse, J.;
́
Havinga, E. Chem. Rev. 1975, 75, 353. (c) Cervelo, J.; Figueredo, M.;
́
̃
Marquet, J.; Moreno-Manas, M.; Bertran, J.; Lluch, J. M. Tetrahedron
Lett. 1984, 25, 4147. (d) Gallardo, I.; Guirado, G.; Marquet, J. J. Org.
Chem. 2002, 67, 2548. Also, see the following report about the
related amination using thallium triacetate: (e) Ciminale, F.; Ciardo,
A.; Francioso, S.; Nacci, A. J. Org. Chem. 1999, 64, 2459.
(7) Mishra, A. K.; Verma, A.; Biswas, S. J. Org. Chem. 2017, 82,
3403.
(8) ten Hoeve, W.; Kruse, C. G.; Luteyn, J. M.; Thiecke, J. R. G.;
Wynberg, H. J. Org. Chem. 1993, 58, 5101.
(9) (a) Kaga, A.; Hayashi, H.; Hakamata, H.; Oi, M.; Uchiyama, M.;
Takita, R.; Chiba, S. Angew. Chem., Int. Ed. 2017, 56, 11807. (b) Pang,
J. H.; Kaga, A.; Chiba, S. Chem. Commun. 2018, 54, 10324.
(10) For the Brønsted-base-mediated intramolecular aminations of
methoxyarenes, see: (a) Meyers, A. I.; Reuman, M.; Gabel, R. A. J.
Org. Chem. 1981, 46, 783. (b) Ogawa, N.; Yamaoka, Y.; Takikawa, H.;
Tsubaki, K.; Takasu, K. J. Org. Chem. 2018, 83, 7994. Also, see ref 9a.
(11) Aminations of highly electron-deficient tris(2,6-dimethoxy-
phenyl)methyl cation or alkoxy arenes bearing nitro groups with
amines were demonstrated without using another external base; see:
(a) Herse, C.; Bas, D.; Krebs, F. C.; Burgi, T.; Weber, J.; Wesolowski,
̈
D
Org. Lett. XXXX, XXX, XXX−XXX