Molecular Basis of Chiral Acid Recognition by Candida rugosa Lipase
free to move. The molecular dynamics simulation was for
1.2 ns with a step time of 1 fs and recorded every 4.8 ps
Kazlauskas, A. N. Serreqi, J. D. Schrag, E. Ziomek, M.
Cygler, Biochemistry 1994, 33, 3494–3500.
yielding 250 structures. Long-range electrostatic interactions
were calculated with particle mesh Ewald method and cut
off at 15 ꢂ, while the Lennard–Jones interactions were cut
off at 9.0 ꢂ. The root mean square deviations of the struc-
tures during the MD simulation were no more than 2 ꢂ,
(see Supporting Information, Figure S5. The four catalyti-
cally essential hydrogen bonds, His449 to SerOg and ester
oxygen, the two hydrogen bonds to the oxyanion, and the
catalytically non-productive hydrogen bond His449 to
[11] J. M. MancheÇo, M. A. Pernas, M. J. Martꢇnez, B.
Ochoa, M. L. Rffla, J. A. Hermoso, J. Mol. Biol. 2003,
332, 1059–1069.
[12] D. Ghosh, Z. Wawrzak, V. Z. Pletnev, N. Li, R. Kaiser,
W. Pangborn, H. Jçrnvall, M. Erman, W. L. Duax,
Structure 1995, 3, 279–288; V. Pletnev, A. Addlagatta,
Z. Wawrzak, W. Duax, Acta Crystallogr. D: Biol. Crys-
tallogr. 2003, 59, 50–56.
[13] K. Lundell, T. Raijola, L. T. Kanerva, Enzyme Microb.
ꢂ
Glu208 were deemed present if the N O distance was
<3.5 ꢂ and the N H O angle was >1208. A catalytically
Technol. 1998, 22, 86–93.
ꢂ ꢂ
[14] N. López, M. A. Pernas, L. M. Pastrana, A. Sꢆnchez, F.
Valero, M. L. Rffla, Biotechnol. Prog. 2004, 20, 65–73.
[15] S. H. Wu, Z. W. Guo, C. J. Sih, J. Am. Chem. Soc. 1990,
112, 1990–1995.
[16] I. J. Colton, S. N. Ahmed, R. J. Kazlauskas, J. Org.
Chem. 1995, 60, 212–217.
productive conformation was one that contained all four cat-
alytically essential hydrogen bonds and did not contain the
non-productive hydrogen bond. Table 2 lists the fraction of
catalytically productive conformation out of the 250 total
conformations.
[17] K. Nishizawa, Y. Ohgami, N. Matsuo, H. Kisida, H.
Hirohara, J. Chem. Soc. Perkin Trans. 2 1997, 1293–
1298.
[18] F. Texier-Boullet, A. Foucaud, Synthesis 1982, 165–166.
[19] M. S. Kharasch, R. A. Mosher, I. S. Bengelsdorf, J. Org.
Chem. 1960, 25, 1000–1006.
Acknowledgements
We thank the Natural Sciences and Engineering Research
Council of Canada for funding, the Minnesota Supercomput-
ing Institute for access to computer modeling hardware and
software, and Dr. Peter Bernhardt for initial molecular mod-
eling.
[20] Y.-F. Li, F. Hammerschmidt, Tetrahedron: Asymmetry
1993, 4, 109–120.
[21] A. Mezzetti, J. D. Schrag, C. S. Cheong, R. J. Kazlaus-
kas, Chem. Biol. 2005, 12, 427–437.
[22] S. Hur, T. C. Bruice, Proc. Natl. Acad. Sci. USA 2003,
100, 12015–12020.
[23] D. F. Sticke, L. G. Presta, K. A. Dill, G. D. Rose, J.
Mol. Biol. 1992, 226, 1143–1159.
[24] M. Botta, E. Cernia, F. Corelli, F. Manetti, S. Soro, Bio-
References
chim. Biophys. Acta 1997, 1337, 302–310.
[1] D. R. Feller, V. S. Kamanna, H. A. I. Newman, K. J.
Romstedt, D. T. Witiak, G. Bettoni, S. H. Bryant, D.
Conte-Camerino, F. Loiodice, V. Tortorella, J. Med.
Chem. 1987, 30, 1265–1267.
[2] G. Bettoni, F. Loiodice, V. Tortorelia, D. Conte-Camer-
ino, M. Mambri, E. Ferrannini, S. H. Bryant, J. Med.
Chem. 1987, 30, 1267–1270.
[3] S. N. Ahmed, R. J. Kazlauskas, A. H. Morinville, P.
Grochulski, J. D. Schrag, M. Cygler, Biocatalysis 1994,
9, 209–225.
[25] F. Manetti, D. Mileto, F. Corelli, S. Soro, C. Palocci, E.
Cernia, I. D’Acquarica, M. Lotti, L. Alberghina, M.
Botta, Biochim. Biophys. Acta 2000, 1543, 146–158.
[26] S. Mittal, S. Khanna, A. Roy, P. V. Bharatam, H. P. S.
Chawla, Enzyme Microb. Technol. 2005, 36, 232–238.
[27] K. Watanabe, T. Uno, T. Koshiba, T. Okamoto, Y.
Ebara, S. Ueji, Bull. Chem. Soc. Jpn. 2004, 77, 543–548.
[28] A. C. Sehgal, R. M. Kelly, J. Am. Chem. Soc. 2002, 124,
8190–8191.
[29] M. Holmquist, F. Haeffner, T. Norin, K. Hult, Protein
[4] S.-H. Wu, PhD thesis, University of Wisconsin, Madi-
Sci. 1996, 5, 83–88.
[30] P. Berglund, M. Holmquist, K. Hult, H. E. Hçgberg,
Biotechnol. Lett. 1995, 17, 55–60.
son, USA, 1987, p 120.
[5] S. K. Latypov, J. M. Seco, E. QuiÇoꢆ, R. Riguera, J.
Org. Chem. 1995, 60, 1538–1545; S. K. Latypov, J. M.
Seco, E. QuiÇoꢆ, R. Riguera, J. Am. Chem. Soc. 1998,
120, 877–882.
[31] P. Berglund, M. Holmquist, K. Hult, J. Mol. Catal. B:
Enzym. 1998, 5, 283–287.
[32] F. Secundo, G. Carrea, C. Tarabiono, P. Gatti-Lafranco-
ni, S. Brocca, M. Lotti, K.-E. Jaeger, M. Puls, T. Eggert,
J. Mol. Catal. B: Enzym. 2006, 39, 166–170.
[33] M. Holmquist, P. Berglund, Org. Lett. 1999, 1, 763–765.
[34] A. T. Brünger, P. D. Adams, G. M. Clore, W. L.
DeLano, P. Gros, R. W. Grosse-Kunstleve, J.-S. Jiang, J.
Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M.
Rice, T. Simonson, G. L. Warren, Acta Crystallogr. D:
Biol. Crystallogr. 1998, 54, 905–921.
[6] T. Miyazawa, S. Kurita, M. Shimaoka, S. Ueji, T.
Yamada, Chirality 1999, 11, 554–560.
[7] Review: P. D. de Maria, J. M. Sanchez-Montero, J. V.
Sinisterra, A. R. Alcantara, Biotechnol. Adv. 2006, 24,
178–194.
[8] J. J. Lalonde, C. Govardhan, N. Khalaf, A. G. Martinez,
K. Visuri, A. L. Margolin, J. Am. Chem. Soc. 1995, 117,
6845–6852.
[9] P. Grochulski, Y. Li, J. D. Schrag, F. Bouthillier, P.
Smith, D. Harrison, B. Rubin, M. Cygler, J. Biol. Chem.
1993, 268, 12843–12847.
[35] T. A. Jones, J.-Y. Zou, S. W. Cowan, Acta Crystallogr.
A: Crys. 1991, 47, 110–119.
[10] P. Grochulski, Y. Li, J. D. Schrag, M. Cygler, Protein
[36] P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Acta
Crystallogr. D: Biol. Crystallogr. 2010, 66, 486–501.
Sci. 1994, 3, 82–91; P. Grochulski, F. Bouthillier, R. J.
Adv. Synth. Catal. 2011, 353, 2529 – 2544
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2543