542
N.T. Abdel Ghani, A.M. Mansour / Spectrochimica Acta Part A 81 (2011) 529–543
4. Conclusion
[6] M. Bocˇa, R.F. Jameson, W. Linert, Coord. Chem. Rev. 255 (2011) 290–317.
[7] N.T. Abdel-Ghani, A.M. Mansour, J. Mol. Struct. 991 (2011) 108–126.
[8] A. Skoog, D.M. West, Fundamentals of Analytical Chemistry, Thomson, Brooks,
Cole, New York, 2004.
Better approaches to the synthesis of the benzimidazole L and
its complexes were developed. On the basis of agreement between
the calculated and experimental results, assignments of all the
fundamental vibrational modes of benzimidazole L and its com-
plexes were examined and proposed at higher level of theory.
The inclusion of solvation to the 1H NMR calculations is nec-
essary especially for acidic protons in order to obtain accurate
values. The equilibrium geometries, and harmonic frequencies, of
the metal complexes were determined and analyzed at DFT level
of theory utilizing LANL2DZ basis set. NBO analysis reveals that
the strong coordination bonds result from donation of electron
density from a lone pair orbital on the nitrogen atoms to the
acceptor metal molecular orbitals, e.g. (LP(1)N2 → *(Pt–Cl5)) and
(LP(1)N3 → *(Pt–Cl4)). The studied ligand is more toxic against the
bacterium S. aureus with MIC (58 g/mL) than the standard tetra-
cycline (82 g/mL). The complexes show moderated cytotoxicity
against the investigated cell lines and represent an interesting class
of new compounds from the viewpoint of their physicochemical
and structural.
[9] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[10] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M.
Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone,
M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T.
Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon,
E.S. Replogle, J.A. Pople, GAUSSIAN 03 (Revision A.9), Gaussian, Inc., Pittsburgh,
2003.
[11] A. Frisch, A.B. Nielson, A.J. Holder, GAUSSVIEW User Manual, Gaussian Inc.,
Pittsburgh, PA, 2000.
[12] R. Ditchfield, Chem. Phys. 76 (1972) 5688.
[13] (a) D. Greenwood, Antimicrobial Chemotherapy, Bailliere, Tindall, London. Part
II. Laboratory Aspects of Antimicrobial Therapy, 1983, p. 71;
(b) V. Lorian, Antibiotics in Laboratory Medicine, Williams & Wilkins, Baltimore,
1996.
[14] National Committee for Clinical Laboratory Standards, NCCLS Approval Stan-
dard Document M2-A7, Vilanova, PA, 2000.
[15] C.M. Lozano, O. Cox, M.M. Muir, J.D. Morales, J.L. Rodr´guez-Cabáin,
P.E. Vivas-Mejfa, F.A. Gonzalez, Inorg. Chim. Acta 271 (1998) 137–
144.
[16] (a) P. Skehan, R. Smreng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J.T. War-
ren, H. Bokesch, S. Kenney, M.R. Boyd, J. Natl. Cancer Inst. 82 (1990) 107–1112;
(b) A. Monks, D. Scudiero, P. Skehan, K. Paull, D. Vistica, C. Hose, J. Langley,
P. Cronise, A. Viagro-Wolff, M. Gra-Goodrich, J. Natl. Cancer Inst. 83 (1991)
757–766.
[17] (a) G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093–3100;
(b) J.A. Pople, H.B. Schlegel, R. Krishnan, J.S. Defrees, J.S. Binkley, M.J. Frisch,
R.A. Whiteside, Int. J. Quantum Chem.: Quantum Chem. Symp. 15 (1981)
269.
Acknowledgments
We would like to extend our grateful thanks to Dr. Mohamed
Elshakre, Chemistry Department, Faculty of Science, Cairo Univer-
sity for allowing us to use his version of the GAUSSIAN 03 package
of programs. Deep thanks to Prof. Dr. Samia Showman, professor
of Medical Biochemistry, National Cancer Centre, Cairo University,
for the great helps and support during the biological part.
[18] (a) M.W. Ellzy, J.O. Jensen, H.F. Hameka, J.G. Kay, D. Zeroka, Spectrochim. Acta
57A (2001) 2417;
(b) J.O. Jensen, A. Banerjee, C.N. Merrow, D. Zeroka, J.M. Lochner, J. Mol. Struct.:
Theochem. 531 (2000) 323;
References
(c) J.O. Jensen, D. Zeroka, J. Mol. Struct.: Theochem. 487 (1999) 267.
[19] O. Sala, N.S. Goncalves, L.K. Noda, J. Mol. Struct. 411 (2001) 565–566.
[20] K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordina-
tion Compounds”, Part B: Applications in Coordination, Organometallic,
and Bioinorganic Chemistry, 6th ed., John Wiley & Sons Inc., New Jersey,
2009.
[1] (a) B.K. Keppler, Metal Complexes in Cancer Chemotherapy, VCH, Weinheim,
1993;
(b) G. Berthon, Handbook of Metal Ligand Interactions in Biological Fluids,
Marcel Dekker, New York, 1995.
[21] W. Nawrocka, B. Sztuba, M.W. Kowalaka, H. Liszkiewicz, Farmaco 59 (2004) 83.
[22] (a) E. Bednarek, J.C. Dobrowolski, K. Dobrosz-Teperek, L. Kozerski, W.
Lewandowski, A.P. Mazurek, J. Mol. Struct. 554 (2000) 233–243;
(b) F.S. Miranda, F.G. Menezes, J. Vicente, A.J. Bortoluzzi, C.Z. Ademir-Neves,
N.S. Gonc¸ alves, J. Mol. Struct. 938 (2009) 1–9.
[23] R.M. Issa, A.A. Hassanein, I.M. El-Mehasseb, R.I. Abed. El-Wadoud, Spectrochim.
Acta Part A 65 (2006) 206–214.
[24] (a) M. Krishnamurthy, P. Phaniraj, S.K. Dogra, J. Chem. Soc. Perkin Trans. II
(1986) 1917–1925;
[2] (a) K. Akdi, R.A. Vilaplana, S. Kamah, J.A.R. Navarro, J.M. Salas, F. González-
Vílcheza, J. Inorg. Biochem. 90 (2002) 51;
(b) A. Matilla, J.M. Tercero, N.H. Dung, B. Voissat, J.M. Pérez, C. Alonso, D. Martín-
Ramos, J. Niclós-Gutiérrez, J. Inorg. Biochem. 55 (1994) 235.
[3] (a) F. Gumus, G. Eren, L. Acik, A. Celebi, F. Ozturk, R. Ilikci Sagkan, S. Gur, A.
Ozkul, A. Elmali, Y. Elerman, J. Med. Chem. 52 (5) (2009) 1345–1357;
(b) M. Goekce, S. Utku, S. Guer, A. Oezkul, F. Gumus, Eur. J. Med. Chem. 40 (2)
(2005) 135–141;
(c) F. Gumus, O. Algul, G. Eren, H. Eroglu, N. Diril, S. Gur, A. Ozkul, Eur. J. Med.
Chem. 38 (5) (2003) 473–480;
(d) F. Gumus, A.B. Demirci, T. Oezden, H. Eroglu, N. Diril, Pharmazie 58 (5) (2003)
303–307;
(e) F. Gumus, I. Pamuk, T. Oezden, S. Yildiz, N. Diril, E. Oksuzoglu, S. Gur, A.
Ozkul, J. Inorg. Biochem. 94 (3) (2003) 255–262.
(b) A.K. Mishra, S.K. Dogra, Bull. Chem. Soc. Jpn. 58 (1985) 3587; A.K. Mishra,
S.K. Dogra, J. Photochem. 31 (1985) 333; A.K. Mishra, S.K. Dogra, Indian J. Phys.
Sect. B 54 (1984) 480; A.K. Mishra, S.K. Dogra, Spectrochim. Acta. Part A 39
(1983) 609.
[25] R.M. Issa, S.A. El-Daly, N.A. El-Wakiel, Spectrochim. Acta Part A 59 (2003)
723–728.
[26] (a) A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amster-
dam, 1982, pp. 544–552;
(b) D.X. West, M.S. Lockwood, A. Liberta, X. Chen, R.D. Willet, Trans. Met. Chem.
18 (1993) 221.
[27] S.P. Perlepes, P. Jacobs, H.O. Desseyn, J.M. Tasangaris, Spectrochim. Acta 43A
(1987) 771.
[4] (a) V. Rajendiran, M. Murali, E. Suresh, S. Sinha, K. Somasundaram, M. Palanian-
davar, Dalton Trans. (2008) 148;
(b) J. Mann, A. Baron, Y. Opoku-Boahen, E. Johansson, G. Parkinson, L.R. Kelland,
S. Neidle, J. Med. Chem. 44 (2001) 138.
[5] (a) E. Bouwmann, W.L. Driessen, J. Reedijk, Coord. Chem. Rev. 104 (1990) 143;
(b) M.A. Puja, T.D. Bharamgouda, N.D. Sathyanarayna, Trans. Met. Chem. 13
(1988) 423.