J. Massue et al. / Tetrahedron Letters 48 (2007) 8052–8055
8055
A. M.; Spiccia, L. Inorg. Chem. 2007, 46, 3876–3888; (d)
Gasser, G.; Belousoff, M. J.; Bond, A. M.; Kosowski, Z.;
Spiccia, L. Inorg. Chem. 2007, 46, 1665–1674; Reductive
amination using aldehydes and cyclen has also been
demonstrated: Chaux, F.; Denat, F.; Espinosa, E.; Gui-
lard, R. Chem. Commun. 2006, 5054.
(546 mg, 4.78 mmol) was then added and the resulting
mixture refluxed overnight. After cooling, the crude
solution was filtered and evaporated under reduced
pressure, redissolved in 60 mL of dichloromethane then
washed with water (3 · 20 mL), dried (MgSO4), evapo-
rated to give 11-hydroxyundecyl ethanethioate (535 mg,
53%), which was used without further purification. To a
solution of triethylamine (0.34 mL, 2.39 mmol) in 25 mL
of chloroform was added 535 mg (2.18 mmol) of
11-hydroxyundecyl ethanethioate. Chloroacetyl chloride
(0.19 mL, 2.39 mmol) was then added dropwise at 0 ꢁC.
The resulting solution was stirred for 2 h at 0 ꢁC and then
left to stir overnight at room temperature. The crude
mixture was washed with water (3 · 20 mL), dried
(MgSO4) and evaporated to afford compound 6a
(600 mg, 86%) as a white powder. Calcd for C15H27O3NaS
[M+Na]: M = 345.1267. Found M = 345.1261. dH
(400 MHz, CDCl3): 4.14 (t, 2H, CH2, J = 7 Hz), 4.03 (s,
2H, CH2), 2.82 (t, 2H, CH2, J = 7 Hz), 2.28 (s, 3H, CH3),
1.62 (qt, 2H, CH2, J = 7 Hz), 1.52 (qt, 2H, CH2,
J = 7 Hz), 1.23 (m, 14H, CH2). dC (100 MHz, CDCl3)
195.47, 166.87, 65.87, 40.47, 30.14, 29.00, 28.91, 28.64,
28.61, 28.58, 28.29, 27.93, 25.24.
4. (a) Rohovec, J.; Gyepes, R.; Cisarova, I.; Rudovsky, J.;
Lukes, I. Tetrahedron Lett. 2000, 41, 1249–1253; (b) Anda,
C.; Bencini, A.; Berni, E.; Ciattini, S.; Chuburu, F.;
Dancsi, A.; Giorgi, C.; Handel, H.; le Baccon, M.;
Paoletti, P.; Tripier, R.; Turcry, V.; Valtancoli, B. Eur.
J. Inorg. Chem. 2005, 11, 2044–2053.
5. Yaouanc, J. J.; Le Bris, N.; Le Gall, G.; Clement, J. C.;
Handel, H.; des Abbayes, H. J. Chem. Soc., Chem.
Commun. 1991, 206–207.
6. (a) Filali, A.; Yaouanc, J. J.; Handel, H. Angew. Chem.,
Int. Ed. Engl. 1991, 30, 560–561; (b) Bernard, H.;
Yaouanc, J. J.; Clement, J. C.; des Abbayes, H.; Handel,
H. Tetrahedron Lett. 1991, 32, 639–642; (c) Bender, J. A.;
Meanwell, N. A.; Wang, T. Tetrahedron 2002, 58, 3111–
3128.
7. Li, C.; Wong, W.-T. Tetrahedron Lett. 2002, 43, 3217–
3220.
8. Baker, W. C.; Choi, M. J.; Hill, D. C.; Thompson, J. L.;
Petillo, P. A. J. Org. Chem. 1999, 64, 2683–2689.
9. (a) Data for 1d, see Ref. 1b; (b) Data for 1e, see Ref. 8;
data for 1f (c) Patinec, V.; Yaouanc, J. J.; Clement, J. C.;
Handel, H.; des Abbayes, H. Tetrahedron Lett. 1995, 36,
79–82.
10. (a) Gunnlaugsson, T.; MacDonaill, D. A.; Parker, D. J.
Am. Chem. Soc. 2001, 123, 12866–12876; (b) Gunnlaugs-
son, T.; Harte, A. J.; Leonard, J. P.; Nieuwenhuyzen, M.
Supramol. Chem. 2003, 15, 505–519; (c) Gunnlaugsson, T.;
15. (a) Data for 5b, Calcd for C22H47N4OS [M+H]:
M = 415.3471. Found M = 415.3469. dH (400 MHz,
CDCl3): 2.84 (t, 2H, CH2, J = 7 Hz), 2.77 (m, 4H, CH2),
2.62 (m, 4H, CH2), 2.55 (m, 4H, CH2), 2.50 (m, 4H, CH2),
2.38 (t, 2H, CH2, J = 7 Hz), 2.30 (s, 3H, CH3), 1.54 (qt,
2H, CH2, J = 7 Hz), 1.44 (qt, 2H, CH2, J = 7 Hz), 1.23
(m, 16H, CH2). dC (100 MHz, CDCl3) 195.43, 53.99,
50.99, 46.51, 45.57, 44.66, 30.11, 29.15, 29.11, 29.05, 29.03,
28.99, 28.95, 28.60, 28.58, 28.18, 26.93, 26.78; (b) Data for
6b, Mass spectrum (MeOH, ES+): Expected M = 458.0.
Found M = 417.3245 (MÀAc+H). dH (400 MHz, CDCl3):
4.05 (t, 2H, CH2, J = 7 Hz), 3.38 (s, 2H, CH2), 2.82 (t, 2H,
CH2, J = 7 Hz), 2.76 (m, 8H, CH2), 2.60 (m, 4H, CH2),
2.56 (m, 4H, CH2), 2.28 (s, 3H, CH3), 1.58 (m, 2H, CH2),
1.52 (m, 2H, CH2), 1.22 (m, 14H, CH2). dC (100 MHz,
CDCl3): 195.25, 171.04, 63.94, 61.18, 55.25, 51.12, 46.42,
45.64, 45.56, 45.48, 44.69, 32.52, 30.02, 28.89, 28.84, 28.81,
28.60, 28.50, 28.18, 27.99, 25.44, 25.30.
´ ´
Leonard, J. P.; Senechal, K.; Harte, A. J. Chem. Commun.
2004, 782–783; (d) Gunnlaugsson, T.; Leonard, J. P. Chem.
Commun. 2005, 3114–3131; (e) McCoy, C. P.; Stomeo, F.;
Plush, S. E.; Gunnlaugsson, T. Chem. Mater. 2006, 18,
´
4336–4343; (f) Senechal-David, K.; Pope, S. J. A.; Quinn,
S.; Faulkner, S.; Gunnlaugsson, T. Inorg. Chem. 2006, 45,
10040–10042; (g) Harte, A. J.; Jensen, P.; Plush, S. E.;
Kruger, P. E.; Gunnlaugsson, T. Inorg. Chem. 2006, 45,
9465–9474; (h) Plush, S. E.; Gunnlaugsson, T. Org. Lett.
2007, 9, 1919–1922; (i) Gunnlaugsson, T.; Stomeo, F. Org.
Biomol. Chem. 2007, 5, 1999–2009.
16. (a) Develay, S.; Tripier, R.; Le Baccon, M.; Patinec, V.;
Serratrice, G.; Handel, H. Dalton Trans. 2005, 3016–
3024; (b) Costa, J.; Balogh, E.; Turcryl, V.; Tripier, R.;
Le Baccon, M.; Chuburu, F.; Handel, H.; Helm, L.;
Toth, E.; Merbach, A. E. Chem. Eur. J. 2006, 12, 6841–
6851.
11. Data for 2b (a) Dischino, D. D.; Delaney, E. J.; Emswiler,
J. E.; Gaughan, G. T.; Prasad, J. S.; Srivastava, S. K.;
Tweedle, M. F. Inorg. Chem. 1991, 30, 1265–1269; Data
for 3b (b) Kikuta, E.; Murata, M.; Katsube, N.; Koike, T.;
Kimura, E. J. Am. Chem. Soc. 1999, 121, 5426–5436; (c)
Data for 4b, see Ref. 10a.
17. Gunnlaugsson, T.; Harte, A. J. Org. Biomol. Chem. 2006,
4, 1572–1579.
18. Experimental procedure and data for 8b: 1,2-Bis(12-bromo-
dodecyl)disulfane (100 mg; 0.18 mmol) was added to a
solution of cyclen (247 mg; 1.43 mmol) and NEt3
(0.06 mL; 0.43 mmol) in CHCl3 (15 mL) and the resulting
mixture was refluxed overnight. After cooling down, the
crude mixture was diluted with 30 mL of CHCl3 and then
washed with NaOH 1 M (3 · 20 mL) and H2O (2 ·
20 mL), dried (MgSO4) and evaporated under vacuum
to afford a colourless oil (186 mg, 70%). Calcd for
C40H87N8S2Æ0.5CHCl3: C, 60.58; H, 10.86; N, 13.95.
Found: C, 60.68; H, 10.66; N. 13.96. Calcd for
C40H87N8S2 [M+H]: M = 743.6523. Found M =
743.6495. dH (400 MHz, CDCl3): 2.67 (br s, 8H, CH2),
2.57 (t, 4H, CH2, J = 7 Hz), 2.52 (br s, 8H, CH2), 2.46 (br
s, 8H, CH2), 2.41 (br s, 8H, CH2), 2.30 (m, 4H, CH2), 1.56
(m, 4H, CH2), 1.35 (m, 4H, CH2), 1.27 (m, 4H, CH2), 1.16
(m, 28H, CH2). dC (100 MHz, CDCl3) 54.0, 51.0, 46.5,
45.7, 45.6, 44.7, 38.6, 29.2, 29.1, 29.1, 29.0, 28.7, 28.7, 28.0,
27.0, 26.9, 26.8. m(KBr)/cmÀ1: 3290, 2923, 2852, 2808,
1642, 1491, 1464, 1352, 1201, 1149, 1043, 943, 721, 658.
12. (a) Turygin, D. S.; Subat, M.; Raitman, O. A.; Arslanov,
V. V.; Koenig, B.; Kalinina, M. A. Angew. Chem., Int. Ed.
2006, 45, 5340–5344; (b) Michinobu, T.; Shinoda, S.;
Nakanishi, T.; Hill, J. P.; Fujii, K.; Player, T. N.;
Tsukube, H.; Ariga, K. J. Am. Chem. Soc. 2006, 128,
14478–14479; (c) Turygin, D. S.; Subat, M.; Raitman, O.
A.; Selector, S. L.; Arslanov, V. V.; Koenig, B.; Kalinina,
M. Langmuir 2007, 23, 2517–2524.
13. (a) Witt, D.; Klajn, R.; Barski, P.; Grzybowski, B. A.
Curr. Org. Chem. 2004, 8, 1763–1797; (b) Kalsin, A. M.;
Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop,
K. J. M.; Grzybowski, B. A. Science 2006, 312, 420–
424.
14. (a) Yokokawa, S.; Tamada, K.; Ito, E.; Hara, M. J. Phys.
Chem. B 2003, 107, 3544–3551; (b) Experimental proce-
dure and data for 6b; 6a was synthesized in two steps
starting from commercially available 1-bromoundecanol.
1-Bromoundecanol (1 g, 3.98 mmol) was dissolved in
40 mL of absolute ethanol. Potassium thioacetate