R. Zhang et al. / Inorganica Chimica Acta 376 (2011) 152–157
157
Fig. 3. UV–Vis spectral change of 1a (8 Â 10À6 M) with 5-fold excess of AgBrO3 in anaerobic CH3CN solution upon irradiation with a 100 W tungsten lamp at 22 °C over
80 min.
[10] B. Meunier (Ed.), Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations,
4. Conclusions
Springer-Verlag, Berlin, 2000.
[11] M. Costas, M.P. Mehn, M.P. Jensen, L. Que, Chem. Rev. 104 (2004) 939.
In conclusion, we have reported a photochemical approach to
prepare trans-dioxoruthenium(VI) porphyrin complexes by photol-
ysis of the corresponding ruthenium(IV) dichlorates or dibromates
with visible light. With this method, we have produced a variety of
trans-dioxoruthenium(VI) porphyrins without the limitation of
porphyrin ligands. This work also demonstrates, for the first time,
that a two electron photo-oxidation can be achieved by two simul-
taneous homolytic bond cleavages, i.e. two one-electron photo-
oxidation. We are currently investigating the photo-synthetic
methodology to produce other high-valent metal-oxo complexes.
Given that porphyrin–ruthenium(V)-oxo transients are more
attractive candidates for oxidations [26,44,47], the extension of
this method for generation of the elusive ruthenium(V)-oxo spe-
cies is underway in our laboratory.
[12] R. Zhang, J.H. Horner, M. Newcomb, J. Am. Chem. Soc. 127 (2005) 6573.
[13] J.P. Collman, A.S. Chien, T.A. Eberspacher, J.I. Brauman, J. Am. Chem. Soc. 122
(2000) 11098.
[14] W. Nam, M.H. Lim, H.J. Lee, C. Kim, J. Am. Chem. Soc. 122 (2000) 6641.
[15] W. Nam, M.H. Lim, S.K. Moon, C. Kim, J. Am. Chem. Soc. 122 (2000) 10805.
[16] M. Newcomb, R. Shen, S.-Y. Choi, P.H. Toy, P.F. Hollenberg, A.D.N. Vaz, M.J.
Coon, J. Am. Chem. Soc. 122 (2000) 2677.
[17] C.-M. Che, J.-S. Huang, Chem. Commun. (2009) 3996.
[18] C.-M. Che, W.-Y. Yu, Pure Appl. Chem. 71 (1999) 281.
[19] R. Zhang, W.-Y. Yu, H.-Z. Sun, W.-S. Liu, C.-M. Che, Chem. Eur. J. 8 (2002) 2495.
[20] C.-M. Che, J.-L. Zhang, R. Zhang, J.-S. Huang, T.-S. Lai, W.-M. Tsui, X.-G. Zhou,
Z.-Y. Zhou, N. Zhu, C.K. Chang, Chem. Eur. J. 11 (2005) 7040.
[21] C. Ho, W.-H. Leung, C.-M. Che, J. Chem. Soc., Dalton Trans. (1991) 2933.
[22] R. Zhang, W.-Y. Yu, T.-S. Lai, C.-M. Che, Chem. Commun. (1999) 409.
[23] R. Zhang, W.-Y. Yu, T.-S. Lai, C.-M. Che, Chem. Commun. (1999) 1791.
[24] J.T. Groves, R. Quinn, J. Am. Chem. Soc. 107 (1985) 5790.
[25] T.-S. Lai, R. Zhang, K.-K. Cheung, C.-M. Che, H.-L. Kwong, Chem. Commun.
(1998) 1583.
[26] J.T. Groves, M. Bonchio, T. Carofiglio, K. Shalyaev, J. Am. Chem. Soc. 118 (1996)
8961.
[27] Z. Gross, S. Ini, J. Org. Chem. 62 (1997) 5514.
Acknowledgments
[28] J.T. Groves, R. Quinn, Inorg. Chem. 23 (1984) 3844.
[29] W.H. Leung, C.M. Che, J. Am. Chem. Soc. 111 (1989) 8812.
[30] P.B. Le Maux, H. Bahri, G. Simonneaux, Chem. Commun. (1994) 1287.
[31] P.B. Le Maux, H. Bahri, G. Simonneaux, Inorg. Chem. 34 (1995) 4691.
[32] Z. Gross, S. Ini, M. Kapon, S. Cohen, Tetrahedron Lett. 37 (1996) 7325.
[33] K.S. Suslick, R.A. Watson, Inorg. Chem. 30 (1991) 912.
[34] K.S. Suslick, R.A. Watson, New J. Chem. 16 (1992) 633.
[35] R. Zhang, M. Newcomb, Acc. Chem. Res. 41 (2008) 468.
[36] R. Zhang, D.N. Harischandra, M. Newcomb, Chem. Eur. J. 11 (2005) 5713.
[37] D.N. Harischandra, R. Zhang, M. Newcomb, J. Am. Chem. Soc. 127 (2005)
13776.
[38] R. Zhang, M. Newcomb, J. Am. Chem. Soc. 125 (2003) 12418.
[39] Y. Huang, E. Vanover, R. Zhang, Chem. Commun. 46 (2010) 3776.
[40] J.W. Lindsey, R.D. Wagner, J. Org. Chem. 54 (1989) 828.
[41] R.L. Halterman, S.T. Jan, J. Org. Chem. 56 (1991) 5253.
[42] A.D. Adler, F.R. Longo, J.D. Finarelli, D. Goldmacher, J. Assour, L. Korsakoff, J.
Org. Chem. 32 (1967) 476.
This work was supported by the Petroleum Research Fund (PRF
48764-GB4) and an internal Grant from WKU Office of Research
(RCAP).
References
[1] R.A. Sheldon, Metalloprophyrins in Catalytic Oxidations, Marcel Dekker, New
York, 1994.
[2] A.E. Shilov, G.B. Shulpin, Chem. Rev. 97 (1997) 2879.
[3] J.E. Baeckvall, Modern Oxidation Methods, Wiley-VCH Verlag, Weinheim,
2004.
[4] S. Caron, R.W. Dugger, S.G. Ruggeri, J.A. Ragan, D.H.B. Ripin, Chem. Rev. 106
(2006) 2943.
[5] M. Sono, M.P. Roach, E.D. Coulter, J.H. Dawson, Chem. Rev. 96 (1996) 2841.
[6] P.R. Ortiz de Montellano (Ed.), Cytochrome P450 Structure, Mechanism, and
Biochemistry, third ed., Kluwer Academic/Plenum, New York, 2005.
[7] I.G. Denisov, T.M. Makris, S.G. Sligar, I. Schlichting, Chem. Rev. 105 (2005)
2253.
[43] Z. Gross, C.M. Barzilay, Chem. Commun. (1995) 1287.
[44] C. Wang, K.V. Shalyaev, M. Bonchio, T. Carofiglio, J.T. Groves, Inorg. Chem. 45
(2006) 4769.
[45] H. Sugimoto, T. Higashi, M. Mori, M. Nagano, Z. Yoshida, H. Ogoshi, Bull. Chem.
Soc. Jpn. 55 (1982) 822.
[8] B. Meunier, Chem. Rev. 92 (1992) 1411.
[9] J.T. Groves, K. Shalyaev, J. Lee, Oxometalloporphyirns in oxidative catalysis, in:
K.M. Kadish, K.M. Smith, R. Guilard (Eds.), The Porphyrin Handbook, 2000, p.
17.
[46] R. Zhang, W.-Y. Yu, K.-Y. Wong, C.-M. Che, J. Org. Chem. 66 (2001) 8145.
[47] E. Vanover, Y. Huang, L. Xu, M. Newcomb, R. Zhang, Org. Lett. 12 (2010) 2246.