structure. The data set was corrected for a disordered solvent with
the program PLATON/SQUEEZE.39 CCDC 820544 contains the
supplementary crystallographic data for this paper.†
4879–4884; (c) X. Zeng, N. Hucher, O. Reinaud and I. Jabin, J. Org.
Chem., 2004, 69, 6886–6889; (d) S. Le Gac, X. Zeng, O. Reinaud and I.
Jabin, J. Org. Chem., 2005, 70, 1204–1210; (e) X. Zeng, D. Coquie`re, A.
Alenda, E. Garrier, T. Prange´, Y. Li, O. Reinaud and I. Jabin, Chem.–
Eur. J., 2006, 12, 6393–6402; (f) S. Le Gac, X. Zeng, C. Girardot and I.
Jabin, J. Org. Chem., 2006, 71, 9233–9236.
Acknowledgements
16 D. Coquie`re, J. Marrot and O. Reinaud, Org. Biomol. Chem., 2008, 6,
3930–3934.
17 For another example of calix[6]arenes bearing three (thio)ureido arms
on the narrow rim but with a binding site for anions far away from the
cavity, see: J. Scheerder, J. F. J. Engbersen, A. Casnati, R. Ungaro and
D. N. Reinhoudt, J. Org. Chem., 1995, 60, 6448–6454.
This research was supported by the Universite´ Libre de Bruxelles
(U.L.B.) (PhD grant of DC).
18 Examples of metal-free complexation of contact ion pairs are still rare,
see: (a) S. Kubik, J. Am. Chem. Soc., 1999, 121, 5846–5855; (b) J. M.
Mahoney, J. P. Davis, A. M. Beatty and B. D. Smith, J. Org. Chem., 2003,
68, 9819–9820; (c) M. D. Lankshear, I. M. Dudley, K.-M. Chan, A. R.
Cowley, S. M. Santos, V. Felix and P. D. Beer, Chem.–Eur. J., 2008, 14,
2248–2263; (d) J. L. Atwood and A. Szumna, Chem. Commun., 2003,
940–941; (e) S. Le Gac and I. Jabin, Chem.–Eur. J., 2008, 14, 548–
557.
19 For recent examples of calixarene based receptors for separated organic
ion pairs: (a) A. Arduini, R. Ferdani, A. Pochini, A. Secchi and
F. Ugozzoli, Angew. Chem., Int. Ed., 2000, 39, 3453–3456; (b) A.
Arduini, E. Brindani, G. Giorgi, A. Pochini and A. Secchi, J. Org.
Chem., 2002, 67, 6188–6194; (c) D. Garozzo, G. Gattuso, A. Notti,
A. Pappalardo, S. Pappalardo, M. F. Parisi, M. Perez and I. Pisagatti,
Angew. Chem., Int. Ed., 2005, 44, 4892–4896; (d) M. D. Lankshear,
N. H. Evans, S. R. Bayly and P. D. Beer, Chem.–Eur. J., 2007, 13,
3861–3870; (e) S. Le Gac, M. Me´nand and I. Jabin, Org. Lett., 2008,
10, 5195–5198; (f) C. Gargiulli, G. Gattuso, C. Liotta, A. Notti, M. F.
Parisi, I. Pisagatti and S. Pappalardo, J. Org. Chem., 2009, 74, 4350–
4353.
Notes and References
1 (a) J.-M. Lehn, in Supramolecular Chemistry, Wiley-VCH, Weinheim,
1995; (b) J. W. Steed, D. R. Turner and K. J. Wallace, in Core
Concepts in Supramolecular Chemistry and Nanochemistry, Wiley-
VCH, Chippenham, 2007; (c) J. H. Hartley, T. D. James and C. J.
Ward, J. Chem. Soc., Perkin Trans. 1, 2000, 3155–3184.
2 Special issue on cyclodextrins: Chem. Rev., 1998, 98, pp. 1741–2076.
3 (a) D. J. Cram and J. M. Cram, in Container Molecules and their Guests,
Vol. 4: Monographs in Supramolecular Chemistry (Ed., J. F. Stoddart),
The Royal Society of Chemistry, Cambridge, 1994; (b) F. Hof, S. L.
Craig, C. Nuckolls and J. Rebek, Jr., Angew. Chem., Int. Ed., 2002, 41,
1488–1508; (c) R. Warmuth and J. Yoon, Acc. Chem. Res., 2001, 34, 95–
105; (d) I. Higler, P. Timmerman, W. Verboom and D. N. Reinhoudt,
Eur. J. Org. Chem., 1998, 12, 2689–2702.
4 (a) B. W. Purse and J. Rebek, Jr., Proc. Natl. Acad. Sci. U. S. A., 2005,
102, 10777–10782; (b) A. Jasat and J. C. Sherman, Chem. Rev., 1999,
99, 931–967.
5 (a) T. Brotin and J.-P. Dutasta, Chem. Rev., 2009, 109, 88–130; (b) A.
Collet, Tetrahedron, 1987, 43, 5725–5759.
20 M. Me´nand and I. Jabin, Org. Lett., 2009, 11, 673–676.
21 M. Me´nand and I. Jabin, Chem.–Eur. J., 2010, 16, 2159–2169.
22 For other examples of acid–base controllable systems based on
calixarenes, see: (a) S. Pappalardo, V. Villari, S. Slovak, Y. Cohen, G.
Gattuso, A. Notti, A. Pappalardo, I. Pisagatti and M. F. Parisi, Chem.–
Eur. J., 2007, 13, 8164–8173; (b) S. Silvi, A. Arduini, A. Pochini, A.
Secchi, M. Tomasulo, F. M. Raymo, M. Baroncini and A. Credi, J. Am.
Chem. Soc., 2007, 129, 13378–13379.
6 C. D. Gutsche, in Calixarenes Revisited, Monographs in Supramolecular
Chemistry (Ed., J. F. Stoddart), The Royal Society of Chemistry,
Cambridge, 1998.
7 (a) T. Tuntulani, P. Thavornyutikarn, S. Poompradub, N. Jaiboon, V.
Ruangpornvisuti, N. Chaichit, Z. Asfari and J. Vicens, Tetrahedron,
2002, 58, 10277–10285; (b) U. Darbost, O. Se´ne`que, Y. Li, G. Bertho,
J. Marrot, M.-N. Rager, O. Reinaud and I. Jabin, Chem.–Eur. J., 2007,
13, 2078–2088.
23 For leading examples of other three-way supramolecular switches, see:
(a) P. R. Ashton, V. Balzani, J. Becher, A. Credi, M. C. T. Fyfe, G.
Mattersteig, S. Menzer, M. B. Nielsen, F. M. Raymo, J. F. Stoddart, M.
Venturi and D. J. Williams, J. Am. Chem. Soc., 1999, 121, 3951–3957;
(b) D. A. Leigh, J. K. Y. Wong, F. Dehez and F. Zerbetto, Nature, 2003,
424, 174–179; (c) I. Hwang, A. Y. Ziganshina, Y. H. Ko, G. Yun and
K. Kim, Chem. Commun., 2009, 416–418.
8 (a) J. L. Sessler, P. A. Gale and W.-S. Cho, in Anion Receptor Chemistry,
The Royal Society of Chemistry, Cambridge, 2006; (b) P. D. Beer
and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 486–516; (c) P. A.
Gale, Coord. Chem. Rev., 2003, 240, 191–221; (d) S. O. Kang, R. A.
Begum and K. Bowman-James, Angew. Chem., Int. Ed., 2006, 45, 7882–
7894.
9 S. K. Kim and J. L. Sessler, Chem. Soc. Rev., 2010, 39, 3784–3809.
10 (a) M. J. Deetz, M. Shang and B. D. Smith, J. Am. Chem. Soc., 2000,
122, 6201–6207; (b) O. Se´ne`que, M.-N. Rager, M. Giorgi, T. Prange´, A.
Tomas and O. Reinaud, J. Am. Chem. Soc., 2005, 127, 14833–14840;
(c) U. Darbost, M.-N. Rager, S. Petit, I. Jabin and O. Reinaud, J. Am.
Chem. Soc., 2005, 127, 8517–8525; (d) G. Ambrosi, P. Dapporto, M.
Formica, V. Fusi, L. Giorgi, A. Guerri, M. Micheloni, P. Paoli, R.
Pontellini and P. Rossi, Inorg. Chem., 2006, 45, 304–314.
11 (a) O. Reinaud, Y. Le Mest and I. Jabin, in Calixarenes in the Nanoworld,
ed. J. Vicens and J. Harrowfield, Springer-Verlag, Netherlands, 2006,
ch. 13, pp. 259–285; (b) D. Coquie`re, S. Le Gac, U. Darbost, O. Se´ne`que,
I. Jabin and O. Reinaud, Org. Biomol. Chem., 2009, 7, 2485–2500.
12 (a) S. Blanchard, L. Le Clainche, M.-N. Rager, B. Chansou, J.-P.
Tuchagues, A. F. Duprat, Y. Le Mest and O. Reinaud, Angew. Chem.,
Int. Ed., 1998, 37, 2732–2735; (b) O. Se´ne`que, M.-N. Rager, M. Giorgi
and O. Reinaud, J. Am. Chem. Soc., 2000, 122, 6183–6189; (c) Y.
Rondelez, M.-N. Rager, A. Duprat and O. Reinaud, J. Am. Chem.
Soc., 2002, 124, 1334–1340.
24 (a) S. Moerkerke, M. Me´nand and I. Jabin, Chem.–Eur. J., 2010, 16,
11712–11719; (b) I. Ravikumar, P. S. Lakshminarayanan, E. Suresh and
P. Ghosh, Inorg. Chem., 2008, 47, 7992–7999.
25 See the Electronic Supporting Information (ESI†).
26 When the three OMe groups are directed outside of the cavity, a
chemical shift of ca. 3.9 ppm is observed. Conversely, a chemical shift
of ca. 2.1 ppm usually corresponds to a self-inclusion of these three
groups.
27 In pure CDCl3, 3·H+ displayed a broad NMR spectrum and the
protonation process was slow on the NMR scale. In contrast, in
CD3CN/CDCl3 (7 : 3) and CD3OD/CDCl3 (7 : 3), well defined spectra
and fast proton transfers were observed. Surprisingly, in these polar
solvents, two conformations differing by the chemical shift of the
OMe groups were visible (see the ESI†). In both cases, one of
the conformations is very close to that observed in the case of 3
and the other one corresponds to a C3v symmetrical flattened cone
conformation with the three OMe groups included into the cavity (dOMe
<2.18 ppm).
13 M. Hamon, M. Me´nand, S. Le Gac, M. Luhmer, V. Dalla and I. Jabin,
J. Org. Chem., 2008, 73, 7067–7071.
28 Addition of 1.5 equiv. of Imi to 3·H+ led to a mixture of 3·H+…Imi
and 3·H+ in slow exchange on the NMR timescale (see the ESI†).
However, accurate determination of the association constant, Ka (Ka =
[3·H+…Imi]/([3·H+] ¥ [Imi]) from the integrations of the different species
was not possible because of the weak competitive binding of water.
This competitive binding was checked by NMR spectroscopy through
the addition of aliquots of water to the above mixture of 3·H+…Imi
and 3·H+ (see the ESI†). For a reference on the effects of water on
hydrogen-bonding-based hosts in chloroform, see: J. C. Adrian, Jr. and
C. S. Wilcox, J. Am. Chem. Soc., 1991, 113, 678–680.
14 (a) U. Darbost, X. Zeng, M. Giorgi and I. Jabin, J. Org. Chem., 2005,
70, 10552–10560; (b) S. Le Gac, J. Marrot, O. Reinaud and I. Jabin,
Angew. Chem., Int. Ed., 2006, 45, 3123–3126; (c) S. Le Gac, M. Luhmer,
O. Reinaud and I. Jabin, Tetrahedron, 2007, 63, 10721–10730; (d) S. Le
Gac, M. Giorgi and I. Jabin, Supramol. Chem., 2007, 19, 185–197; (e) S.
Le Gac, J.-F. Picron, O. Reinaud and I. Jabin, Org. Biomol. Chem., 2011,
9, 2387–2396.
15 (a) I. Jabin and O. Reinaud, J. Org. Chem., 2003, 68, 3416–3419; (b) U.
Darbost, M. Giorgi, O. Reinaud and I. Jabin, J. Org. Chem., 2004, 69,
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 6373–6384 | 6383
©