T. Peppel, C. Schmidt, M. Köckerling
ARTICLE
[2] a) O. T. Christensen, J. Prakt. Chem. 1892, 45, 213–222; b) O.
Nordenskjöld, Z. Anorg. Chem. 1892, 1, 126–143; c) A. Werner,
Z. Anorg. Chem. 1897, 15, 243–277.
(calcd.): C 29.7 (29.8); H 4.2 (4.3); N 25.0 (25.3) %. IR: νmax = 3303,
˜
3226, 3151, 2083 (νCN), 1553, 1266, 1151, 828 (νCS), 764, 698,
492 cm–1. UV/Vis (acetone): λmax = 396, 526 nm. μeff /μB = 3.85 (T =
25 °C, c = 4.21·10–2 mol·l–1, ν0 = 300 MHz, χmol = 6.22·10–3)
[3] Y. Takéuchi, Y. Saito, Bull. Chem. Soc. Jpn. 1957, 30, 319–325.
[4] a) H. M. Colquhoun, K. Henrick, J. Chem. Soc., Chem. Commun.
1981, 85–87; b) R. Ciechanowski, A. Grodzicki, E. Szlyk, Z.
Zhang, G. J. Palenik, J. Cryst. Spectrosc. Chem. 1993, 23, 649–
655; c) C. J. Kepert, M. Kurmoo, M. R. Truter, P. Day, J. Chem.
Soc., Dalton Trans. 1997, 607–613; d) K.-L. Zhang, W. Chen, Y.
Xu, Z. Wang, Z. J. Zhong, X.-Z. You, Polyhedron 2001, 20,
2033–2036; e) T. G. Cherkasova, I. P. Goryunova, Russ. J. Inorg.
Chem. 2003, 48, 528–532; f) T. G. Cherkasova, I. P. Goryunova,
Russ. J. Inorg. Chem. 2004, 49, 22–24; g) A. Cucos, N. Avarvari,
M. Andruh, Y. Journaux, A. Müller, M. Schmidtmann, Eur. J.
Inorg. Chem. 2006, 903–907; h) V. M. Nikitina, O. V. Nesterova,
V. N. Kokozay, E. A. Goreshnik, J. Jezierska, Polyhedron 2008,
27, 2426–2430; i) V. M. Nikitina, O. V. Nesterova, V. N. Kok-
ozay, V. V. Dyakonenko, O. V. Shishkin, J. Jezierska, Polyhedron
2009, 28, 1265–1272; j) V. M. Nikitina, O. V. Nesterova, V. N.
Kokozay, V. V. Dyakonenko, O. V. Shishkin, J. Jezierska, Inorg.
Chem. Commun. 2009, 12, 101–104.
(BMIm)[Cr(NCS)4(NH3)2] (BMIm
=
1-Butyl-3-methylimida-
zolium): From BMImCl.[34] Yield 91 %. mp. 122 °C. C12H21N8CrS4
(calcd.): C 31.3 (31.5); H 4.6 (4.6); N 24.1 (24.5) %. IR: νmax = 3309,
˜
3227, 3150, 2926, 2082 (νCN), 1560, 1262, 1158, 822 (νCS), 743, 693,
488 cm–1. UV/Vis (acetone): λmax = 396, 526 nm. μeff /μB = 3.83 (T =
25 °C, c = 2.75·10–2 mol·l–1, ν0 = 300 MHz, χmol = 6.14·10–3)
(HexMIm)[Cr(NCS)4(NH3)2] (HexMIm = 1-Hexyl-3-methylimida-
zolium): From HexMImBr.[33] Yield 93 %. mp. 126 °C. C14H25N8CrS4
(calcd.): C 34.4 (34.6); H 5.1 (5.2); N 23.0 (23.1) %. IR: νmax = 3372,
˜
3302, 3231, 3154, 2928, 2080 (νCN), 1259, 1164, 823 (νCS), 690,
489 cm–1. UV/Vis (acetone): λmax = 396, 526 nm. μeff /μB = 3.90 (T =
25 °C, c = 0.79·10–2 mol·l–1, ν0 = 250 MHz, χmol = 6.36·10–3)
(PeMIm)[Cr(NCS)4(NH3)2] (PeMIm = 1,2,3,4,5-Pentamethylimida-
zolium): From PeMImI.[23] Yield 95 %. mp. 198 °C. C12H21N8CrS4
[5] E. E. Wegner, A. W. Adamson, J. Am. Chem. Soc. 1966, 88, 394–
404.
[6] a) Concepts of Inorganic Photochemistry (Eds.: A. W. Adamson,
P. D. Fleischhauer), Wiley, New York, 1975; b) V. Balzani, V.
Carassiti, Photochemistry of Coordination Compounds, Academic
Press, London, 1970.
[7] a) B. Mainusch, F. Wasgestian, Z. Stasicka, A. Karocki, J. Inf.
Rec. Mats. 1994, 21, 687–689; b) B. Mainusch, A. Karocki,
D. M. Guldi, Z. Stasicka, F. Wasgestian, Inorg. Chim. Acta 1997,
255, 87–93.
(calcd.): C 31.3 (31.5); H 4.6 (4.6); N 24.5 (24.5) %. IR: νmax = 3305,
˜
3280, 3228, 3193, 3152, 2956, 2924, 2469, 2424, 2298, 2071 (νCN),
1650, 1601, 1544, 1439, 1390, 1369, 1252, 1073, 1033, 972, 830 (νCS),
704, 650, 578, 562 cm–1. UV/Vis (acetone): λmax = 396, 526 nm. μeff
μB = 3.85 (T = 25 °C, c = 2.99·10–2 mol·l–1, ν0 = 300 MHz, χmol
6.22·10–3)
/
=
(DML)[Cr(NCS)4(NH3)2] (DML = 1,3-Dimethyllophinium): From
DMLI. Yield 95 %. mp. 172 °C. C27H27N8CrS4 (calcd.): C 50.2 (50.4);
[8] a) I. Gănescu, M. Preda, Pharmazie 1990, 45, 438–439; b) G.
Bratulescu, I. Ganescu, S. Braz. J. Chem. 2007, 15, 49–57;
c) S. M. Al-Ghannam, Spectrochim. Acta 2008, 69A, 1188–1194;
d) V. Uivarosi, C. M. Monciu, Rev. Chim. 2009, 60, 132–136.
[9] A. Łodzińska, S. Ali, Pol. J. Chem. 1983, 57, 1365–1370.
[10] T. Welton, Chem. Rev. 1999, 99, 2071–2083.
H 4.2 (4.2); N 17.5 (17.4); S 19.9 (19.9) %. IR: ν
= 3368, 3350,
˜
max
3320, 3232, 3219, 3187, 3139, 3054, 3029, 2951, 2912, 2056 (νCN),
1500, 1591, 1509, 1485, 1441, 1409, 1392, 1350, 1273, 1237, 1179,
1158, 1076, 1052, 1021, 963, 937, 926, 855 (νCS), 786, 770, 759, 697,
671 cm–1. UV/Vis (acetone): λmax = 396, 526 nm. μeff /μB = 3.85 (T =
25 °C, c = 1.47·10–2 mol·l–1, ν0 = 300 MHz, χmol = 6.21·10–3)
[11] P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772–
3789.
[12] K. R. J. Seddon, J. Chem. Technol. Biotechnol. 1997, 68, 351–
356.
Conclusions
[13] P. Bonhôte, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram,
M. Grätzel, Inorg. Chem. 1996, 35, 1168–1178.
A series of 9 different complex compounds with the
[Cr(NCS)4(NH3)2]– Reineckate anion and large organic cations
was synthesized. Looking for the possibility to use such com-
pounds as metal-containing Ionic Liquids the melting points
were measured using the DSC technique. It turned out that all
Reineckates with imidazolium based cations have melting
points higher than 100 °C. Only the tetra-n-dodecylammonium
Reineckate melts below 100 °C at 48 °C and can be consid-
ered an “Ionic Liquid”. Single crystal X-ray structures of 4
selected compounds show that most likely H···S and H···N hy-
drogen bonds contribute to the relative high melting points of
the imidazolium based Reineckates.
[14] a) S. Hayashi, H. Hamaguchi, Chem. Lett. 2004, 33, 1590–1591;
b) Q.-G. Zhang, J.-Z. Yang, X.-M. Lu, J.-S. Gui, M. Huang, Fluid
Phase Equilibria 2004, 226, 207–211; c) S. Hayashi, S. Saha, H.
Hamaguchi, IEEE Trans. Magn. 2006, 42, 12–14; C. Zhong, T.
Sasaki, A. Jimbo-Kobayashi, E. Fujiwara, A. Kobayashi, M. Tada,
Y. Iwasawa, Bull. Chem. Soc. Jpn. 2007, 80, 2365–2374.
[15] a) S. A. Kozlova, S. P. Verevkin, A. Heintz, T. Peppel, M. Köck-
erling, J. Chem. Eng. Data 2009, 54, 1524–1528; b) T. Peppel,
M. Köckerling, Z. Anorg. Allg. Chem. 2010, 636, 2439–2446.
[16] T. Peppel, M. Köckerling, M. Geppert-Rybczyńska, R. V. Ralys,
J. K. Lehmann, S. P. Verevkin, A. Heintz, Angew. Chem. 2010,
122, 7270–7274; Angew. Chem. Int. Ed. 2010, 49, 7116–7119.
[17] a) S. Tait, R. A. Osteryoung, Inorg. Chem. 1984, 23, 4352–4360;
b) P. B. Hitchcock, K. R. Seddon, T. Welton, J. Chem. Soc., Dal-
ton Trans. 1993, 2639–2644; c) S. A. Katsyuba, P. J. Dyson,
E. E. Vandyukova, A. V. Chernova, A. Vidis, Helv. Chim. Acta
2004, 87, 2556–2565; d) A. Wulf, K. Fumino, R. Ludwig, J. Phys.
Chem. A 2010, 114, 685–686.
Acknowledgement
Support from the Deutsche Forschungsgemeinschaft (DFG) (SPP
1191-Ionic Liquids, KO-1616/4–1 and 1616/4–2) is gratefully ac-
knowledged. We thank Elias Reiter for his help with the drawings of
this manuscript.
[18] a) E. E. Wegener, A. W. Adamson, J. Am. Chem. Soc. 1966, 88,
394–404; b) M. A. Bennett, R. J. H. Clark, A. D. J. Goodwin, In-
org. Chem. 1967, 6, 1625–1631; c) A. Lodzinska, S. Szczepanski,
Rocz. Chem. 1972, 46, 1473–1478.
[19] D. F. Evans, J. Chem. Soc. 1959, 2003–2005.
[20] S. K. Sur, J. Magnet. Res. 1989, 82, 169–173.
[21] a) E. Rosenbohm, Z. Phys. Chem. 1919, 93, 693–720; b) S. Berk-
man, H. Zocher, Z. Phys. Chem. 1926, 124, 318–326; c) E. O.
Fischer, U. Piesbergen, Z. Naturforsch. 1956, 11b, 758–759;
References
[1] a) J. Morland, Q. J. Chem. Soc. 1861, 13, 252–254; b) A. Rei-
necke, J. Liebigs Ann. Chem. 1863, 126, 113–118.
1320
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Z. Anorg. Allg. Chem. 2011, 1314–1321