constant for thermal charge recombination between TAAꢀ+ and
Ru+ in the triad can be estimated to 6.7 ꢂ 107 sꢁ1. This in turn
permits the conclusion that in the triad the doubly charge
separated state is formed with a yield greater than 64% from
the initially excited Ru(bpy)32+ MLCT state.
+
Subsequent thermal charge recombination between TAAꢀ
and AQꢀꢁ (kET = 7.7 ꢂ 105 sꢁ1) may be slow not only because
of the long distance between the reaction partners (B22 A
center-to-center), but inverted driving force effect and spin
selection rule may play a non-negligible role as well.20
In summary, we have demonstrated vectorial electron trans-
2+
fer in a linear triad incorporating the Ru(bpy)3
complex.
Due in large part to the use of this particular photosensitizer,
a long-lived charge separated state is formed with high quan-
tum yield. An interesting aspect will be to elucidate how the
rate constants and quantum yields for the individual charge
separation and charge recombination processes depend on
distance.21,22,23
Scheme 3 Energy level scheme showing the relevant charge separated
2+
states which can be formed after photoexcitation of the Ru(bpy)3
photosensitizer. Rate constants (k) for the individual electron transfer
steps were estimated as described in the text.
Table
1 Reduction potentials of the individual redox-active
This research was funded by the Swiss National Science
Foundation (grant number 200021-117578) and the Deutsche
Forschungsgemeinschaft (INST 186/872-1).
components of the TAA–Ru2+–AQ triad. Cyclic voltammetry was
performed in acetonitrile solution with 0.1 M tetrabutylammonium
hexafluorophosphate as the electrolyte. Excited-state potentials were
calculated from ground-state potentials using the common
approximations10
Notes and references
Redox couple
V vs. Fc+/Fc
1 M. R. Wasielewski, Chem. Rev., 1992, 92, 435.
2 O. S. Wenger, Coord. Chem. Rev., 2009, 253, 1439.
3 V. Balzani, Electron transfer in chemistry, VCH Wiley, Weinheim,
2001.
4 T. J. Rutherford and F. R. Keene, Inorg. Chem., 1997, 36, 2872.
5 K. A. Opperman, S. L. Mecklenburg and T. J. Meyer, Inorg.
Chem., 1994, 33, 5295.
Ru(III)/Ru(II)
TAAꢀ+/TAA
1.03
0.42
ꢁ
AQ/AQꢀ
ꢁ1.2
*Ru(II)/Ru(I)
Ru(III)/*Ru(II)
0.8
ꢁ1.09
6 E. Baranoff, J.-P. Collin, L. Flamigni and J.-P. Sauvage, Chem.
Soc. Rev., 2004, 33, 147.
7 A. C. Benniston, A. Harriman, C. Pariani and C. A. Sams, Phys.
Chem. Chem. Phys., 2006, 8, 2051.
8 J.-P. Collin, S. Guillerez, J.-P. Sauvage, F. Barigelletti, L. De Cola,
L. Flamigni and V. Balzani, Inorg. Chem., 1991, 30, 4230.
´
9 P. P. Laine, S. Campagna and F. Loiseau, Coord. Chem. Rev.,
2008, 252, 2552.
10 D. M. Roundhill, Photochemistry and Photophysics of Metal
Complexes, Plenum Press, New York, 1994.
11 P. Laine
Penaud, Chem.–Eur. J., 2002, 8, 3162.
12 O. Johansson, M. Borgstrom, R. Lomoth, M. Palmblad,
´
, F. Bedioui, E. Amouyal, V. Albin and F. Berruyer-
¨
Scheme 4 Molecular structures of two reference dyads investigated in
J. Bergquist, L. Hammarstrom, L. C. Sun and B. Akermark, Inorg.
Chem., 2003, 42, 2908.
¨
the course of this work.
13 L. Flamigni, J.-P. Collin and J.-P. Sauvage, Acc. Chem. Res., 2008,
41, 857.
14 L. Flamigni, E. Baranoff, J.-P. Collin and J.-P. Sauvage,
Chem.–Eur. J., 2006, 12, 6592.
photoexcited Ru(bpy)32+ takes place within less than 8 ns, hence
kET Z 1.3 ꢂ 108 sꢁ1. In reference dyad Ru2+–AQ, comprised of
2+
a Ru(bpy)3
moiety connected to an anthraquinone unit
(Scheme 4, right), the 3MLCT population decays with a life-
time of 300 ns (Fig. S3 in ESIz), indicating that photoinduced
ruthenium-to-AQ electron transfer occurs with a rate constant
of roughly 2.2 ꢂ 106 sꢁ1. Given a decay rate constant of 1.2 ꢂ
106 sꢁ1 for the 3MLCT population of the Ru(bpy)32+ unit,18 we
may conclude that in the triad the singly charge-separated state
TAAꢀ+–Ru+–AQ forms with a quantum yield of at least
15 R. J. Kumar, S. Karlsson, D. Streich, A. R. Jensen, M. Jager,
¨
H.-C. Becker, J. Bergquist, O. Johansson and L. Hammarstrom,
¨
Chem.–Eur. J., 2010, 16, 2830.
16 M. Abrahamsson, M. Jager, T. Osterman, L. Eriksson, P. Persson,
¨
H.-C. Becker, O. Johansson and L. Hammarstrom, J. Am. Chem.
Soc., 2006, 128, 12616.
¨
17 D. Hanss and O. S. Wenger, Inorg. Chem., 2009, 48, 671.
18 J. V. Caspar and T. J. Meyer, J. Am. Chem. Soc., 1983, 105,
5583.
19 H. Imahori, K. Tamaki, D. M. Guldi, C. P. Luo, M. Fujitsuka,
O. Ito, Y. Sakata and S. Fukuzumi, J. Am. Chem. Soc., 2001,
123, 2607.
20 K. S. Schanze, D. B. MacQueen, T. A. Perkins and L. A. Cabana,
Coord. Chem. Rev., 1993, 122, 63.
21 D. Hanss, M. E. Walther and O. S. Wenger, Coord. Chem. Rev.,
2010, 254, 2584.
2+
97% from the initially excited Ru(bpy)3 MLCT state. In the
triad, the singly charge separated state is undetectable with
nanosecond time resolution, because the doubly charge separated
state (TAAꢀ+–Ru2+–AQꢀꢁ) forms with a rate constant of
Z1.3 ꢂ 108 sꢁ1 (see above). In the TAA–Ru2+ reference dyad,
the TAAꢀ+–Ru+ charge-separated state is observable and
exhibits a lifetime of 15 ns (Fig. S4 in ESIz), hence the rate
22 O. S. Wenger, Chem. Soc. Rev., 2011, 40, 3538.
23 O. S. Wenger, Acc. Chem. Res., 2011, 44, 25.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10145–10147 10147