Inorganic Chemistry
ARTICLE
HC at 2 K is 8 kG, at which a field-induced metamagnetic
transition transpires. When the temperature is elevated, HC is
prone to dwindle to ca. 1.6 kG at T = 4 and 7 K and finally pass
away at T = 15 K. The magnetic conversion is ascertained by the
FC plots at several magnetic fields (Figure 14). The maximum at
Tmax ≈ 7.5 K in the FC plot is retained up to H = 100 G and
disappears above H = 2 kG. The peak feature designates that an
antiferromagnetic state is stabilized in that field. The antiferro-
magnetic phase may be established because of the πꢀπ contacts.
funded by the Ministry of Education, Science and Technology
(NRF20110018396).
’ REFERENCES
(1) Das, A.; Gieb, K.; Krupskaya, Y.; Demeshko, S.; Dechert, S.;
Klingeler, R.; Kataev, V.; Buchner, B.; Muller, P.; Meyer, F. J. Am. Chem.
Soc. 2011, 133, 3433–3443.
(2) Hewitt, I. J.; Tang, J.; Madhu, N. T.; Anson, C. E.; Lan, Y.; Luzon,
J.; Etienne, M.; Sessoli, R.; Powell, A. K. Angew. Chem., Int. Ed. 2010,
49, 6352–6356.
The critical field is estimated at H ≈ 1.6 kG in the vicinity of Tmax
,
and above that field, a weak ferromagnetic phase results. The ac
(3) Jiang, S. D.; Wang, B. W.; Su, G.; Wang, Z. M.; Gao, S. Angew.
Chem., Int. Ed. 2010, 49, 7448–7451.
data disclose that the broad peak in χm0 is centered at TN ≈ 10 K
00
(4) Rinck, J.; Novitchi, G.; Van den Heuvel, W.; Ungur, L.; Lan,
Y. H.; Wernsdorfer, W.; Anson, C. E.; Chibotaru, L. F.; Powell, A. K.
Angew. Chem., Int. Ed. 2010, 49, 7583–7587.
(5) Gatteschi, D.; Sessoli, R. Angew. Chem., Int. Ed. 2003, 42, 268–297.
(6) Bogani, L.; Vindigni, A.; Sessoli, R.; Gatteschi, D. J. Mater. Chem.
2008, 18, 4750–4758.
without any χm responses, suggesting the existence of long-
range antiferromagnetic order with a hidden spin canting (Figure 15).
The HꢀT phase diagram is shown in Figure S16 in the Supporting
Information.
’ CONCLUSIONS
(7) Harris, T. D.; Bennett, M. V.; Clerac, R.; Long, J. R. J. Am. Chem.
Soc. 2010, 132, 3980–3988.
(8) Sun, H.-L.; Wang, Z.-M.; Gao, S. Coord. Chem. Rev. 2010, 254,
1081–1100.
(9) Davies, J. E.; Gatehouse, B. M.; Murray, K. S. J. Chem. Soc., Dalton
Trans. 1973, 2523–1973.
(10) Kennedy, B. J.; Murray, K. S. Inorg. Chem. 1985, 24, 1552–1557.
(11) Sun, H.-L.;Wang, Z.-M.;Gao, S. Inorg. Chem. 2005, 44, 2169–2176.
(12) Price, D. J.; Batten, S. R.; Moubaraki, B.; Murray, K. S. Poly-
hedron 2003, 22, 2161–2167.
(13) Adhikary, C.; Koner, S. Coord. Chem. Rev. 2010, 254, 2933–2958.
(14) Hong, C. S.; Do, Y. Angew. Chem., Int. Ed. 1999, 38, 193–195.
(15) Hong, C. S.; Koo, J. E.; Son, S. K.; Lee, Y. S.; Kim, Y. S.; Do, Y.
Chem.—Eur. J. 2001, 7, 4243–4252.
(16) Yoo, H. S.; Kim, J. I.; Yang, N.; Koh, E. K.; Park, J. G.; Hong,
C. S. Inorg. Chem. 2007, 46, 9054–9056.
(17) Nayak, S.; Evangelisti, M.; Powell, A. K.; Reedijk, J. Chem.—Eur.
J. 2010, 16, 12865–12872.
(18) Li, R.-Y.; Wang, Z.-M.; Gao, S. CrystEngComm 2009, 11, 2096.
(19) Wang, X.-Y.; Wang, Z.-M.;Gao, S. Chem. Commun. 2008, 281–294.
(20) Liu, X. T.; Wang, X. Y.; Zhang, W. X.; Cui, P.; Gao, S. Adv.
Mater. 2006, 18, 2852–2856.
(21) Wang, X.-Y.; Wang, L.; Wang, Z.-M.; Su, G.; Gao, S. Chem.
Mater. 2005, 17, 6369–6380.
(22) Reddy, K. R.; Rajasekharan, M. V.; Tuchagues, J. P. Inorg. Chem.
1998, 37, 5978–5982.
(23) Monfort, M.; Ribas, J.; Solans, X.; Font-Bardí, M. Inorg. Chem.
1996, 35, 7633–7638.
(24) Yin, P.; Gao, S.; Zheng, L.-M.; Wang, Z.; Xin, X.-Q. Chem.
Commun. 2003, 1076–1077.
(25) Wang, X.-Y.; Wang, L.; Wang, Z.-M.; Gao, S. J. Am. Chem. Soc.
2006, 128, 674–675.
(26) Jia, Q.-X.; Tian, H.; Zhang, J.-Y.; Gao, E.-Q. Chem.—Eur. J.
2011, 17, 1040–1051.
(27) Gao, E.-Q.; Liu, P.-P.; Wang, Y.-Q.; Yue, Q.; Wang, Q.-L. Chem.
—Eur. J. 2009, 15, 1217–1226.
(28) Liu, T.-F.; Fu, D.; Gao, S.; Zhang, Y.-Z.; Sun, H.-L.; Su, G.; Liu,
Y.-J. J. Am. Chem. Soc. 2003, 125, 13976–13977.
(29) Miyasaka, H.; Saitoh, A.; Abe, S. Coord. Chem. Rev. 2007,
251, 2622–2664.
(30) Ge, C.-H.; Cui, A.-L.; Ni, Z.-H.; Jiang, Y.-B.; Zhang, L.-F.; Ribas,
J.; Kou, H.-Z. Inorg. Chem. 2006, 45, 4883–4885.
(31) Ko, H. H.; Lim, J. H.; Kim, H. C.; Hong, C. S. Inorg. Chem.
2006, 45, 8847–8849.
We have prepared three 1D Mn(III) coordination polymers
with the Schiff bases (L1 for 1, L2 for 2, and L3 for 3) bridged by
end-to-end azides. The crystal systems and structural parameters
are altered by relying on the Schiff bases used. The variable-
temperature magnetic measurements reveal that intrachain anti-
ferromagnetic couplings operate between the magnetic centers
via azide bridges, and spin-canting behavior is obvious at low tem-
peratures. Interestingly, the field-induced metamagnetic transi-
tion from an antiferromagnetic state to a weak ferromagnetic
phase takes place in 1 and 3, whereas the field-induced two-step
magnetic phase transition occurs in 2. The exchange coupling
constant (J) of 2 is larger than those of 1 and 3, which is likely
relevant to the MnꢀNax bond lengths. Notably, a significantly
high Tc of 38 K is observed in 2, which is compared with critical
temperatures of 11 K for 1 and 10 K for 3. In addition, 3 exhibits
the highest coercive field (2.8 kG) among azide-bridged MnIII
systems examined so far. The long-range order can be under-
stood in terms of the combined contributions of the intrachain
exchange couplings (J) and through-space dipolar interaction
between the neighboring chains. The finding of such a high
ordering temperature (38 K) in the spin-canted 1D chain system
(2) without hydrogen-bonding and/or πꢀπ contacts between
the chain structures is surprising, which may provide a strategy to
developing high-Tc molecular magnets by manipulating the
dipolar interactions.
’ ASSOCIATED CONTENT
S
Supporting Information. X-ray crystallographic files in
b
CIF format and additional structural and magnetic data for the
complexes. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: cshong@korea.ac.kr.
’ ACKNOWLEDGMENT
(32) Liu, C. M.; Zhang, D. Q.; Zhu, D. B. Inorg. Chem. 2009, 48,
4980–4987.
(33) Saha, S.; Mal, D.; Koner, S.; Bhattacherjee, A.; G€utlich, P.;
Mondal, S.; Mukherjee, M.; Okamoto, K.-I. Polyhedron 2004, 23,
1811–1817.
This work was supported by grants from the National Research
Foundation of Korea funded by the Korean Government (Grant
2011-0003264) and by the Priority Research Centers Program
through the National Research Foundation of Korea (NRF)
10784
dx.doi.org/10.1021/ic2013232 |Inorg. Chem. 2011, 50, 10777–10785