5710
I. A. Moussa et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5707–5710
Compounds 20, 21, 30, and 31, featuring a four-carbon linker,
Acknowledgements
displayed high r1 affinities (r1 Ki = 4.2–16 nM), with a simple
phenylbutyl group conferring the greatest r1 affinity (20, r1
Ki = 4.2 nM). Although 20 showed good r1 affinity, it also pos-
sessed high affinity for r2 receptors (r2 Ki = 18 nM), with a net
binding profile akin to the subtype nonselective phenylpropyl ana-
Ki determinations were generously provided by the National
Institute of Mental Health’s Psychoactive Drug Screening Program,
Contract #NO1MH32004 (NIMH PDSP). The NIMH PDSP is directed
by Bryan L. Roth, MD, PhD at the University of North Carolina at
Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda,
MD, USA. For experimental details please refer to the PDSP web site
log 26, and contrasting the high
r1 selectivity of the corresponding
benzyl (1) and phenethyl (16) congeners. In stark contrast to 4 and
29, a 4-methyl ether did not confer high r1 selectivity within the
phenylbutyl series, and compound 21 (r1 Ki = 13 nM, r2
showed a binding profile similar to that of the corresponding phen-
ethyl analog 19 (r1 Ki = 9.4 nM, r2 1 = 11). However, 3-meth-
oxyphenylbutyl derivative 31 showed reasonable r1 selectivity
r1 Ki = 7.6 nM, r2 1 = 28), unlike the 3-methoxy substituted
/r1 = 7)
Supplementary data
/r
Supplementary data associated with this article can be found, in
(
/r
members of the previous series (3, 18, and 28).
Excepting butyl analog 21, derivatives comprising a methoxy
group at the 4-position of the distal phenyl ring appear to be well
tolerated at the r1 site, a trend similarly observed in our previous
work.35 The 4-methoxy-substituted derivative containing a propyl
linker (29) showed the highest r1 affinity and selectivity
References and notes
1. Martin, W. R.; Eades, C. G.; Thompson, J. A.; Huppler, R. E.; Gilbert, P. E. J.
Pharmacol. Exp. Ther. 1976, 197, 517.
2. Tam, S. W. Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 6703.
3. Quirion, R.; Chicheportiche, R.; Contreras, P. C.; Johnson, K. M.; Lodge, D.; Tam,
S. W.; Woods, J. H.; Zukin, S. R. Trends Neurosci. 1987, 10, 444.
4. Tam, S. W.; Cook, L. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 5618.
5. Quirion, R.; Bowen, W. D.; Itzhak, Y.; Junien, J. L.; Musacchio, J. M.; Rothman, R.
B.; Su, T.-P.; Tam, S. W.; Taylor, D. P. Trends Pharmacol. Sci. 1992, 13, 85.
6. Hellewell, S. B.; Bowen, W. D. Brain Res. 1990, 527, 244.
7. Walker, J. M.; Bowen, W. D.; Goldstein, S. R.; Roberts, A. H.; Patrick, S. L.;
Hohmann, A. G.; DeCosta, B. Brain Res. 1992, 581, 33.
(Ki = 3.1 nM, r2/r1 = 45) in this series of piperazines, comparable
to compound 1. It is postulated that a propyl linker between the
central piperazine ring and flanking benzyl group is of a suitable
distance for the aryl ring to accommodate the primary hydropho-
bic region of the
r1 pharmacophore. In terms of off-target affinity,
comparison of the 4-methyl ethers 4 and 29 showed that com-
pound 29 possessed a 10-fold reduction in binding at the serotonin
8. Hellewell, S. B.; Bruce, A.; Feinstein, G.; Orringer, J.; Williams, W.; Bowen, W. D.
Eur. J. Pharmacol., Mol. Pharmacol. Sect. 1994, 268, 9.
9. Weber, E.; Sonders, M.; Quarum, M.; McLean, S.; Pou, S.; Keana, J. F. W. Proc.
Natl. Acad. Sci. U.S.A. 1986, 83, 8784.
10. Matsumoto, R. R.; Pouw, B. Eur. J. Pharmacol. 2000, 401, 155.
11. Bowen, W. D.; deCosta, B.; Hellewell, S. B.; Walker, J. M.; Rice, K. C. Mol.
Neuropharmacol. 1990, 3, 117.
12. Prasad, P. D.; Li, H. W.; Fei, Y.-J.; Ganapathy, M. E.; Fujita, T.; Plumely, L. H.;
Yang-Feng, T. L.; Leibach, F. H.; Ganapathy, V. J. Neurochem. 1998, 70, 443.
13. Hanner, M.; Moebius, F. F.; Flandorfer, A.; Knaus, H.-G.; Striessnig, J.; Kempner,
E.; Glossmann, H. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 8072.
14. Kekuda, R.; Prasad, P. D.; Fei, Y.-J.; Leibach, F. H.; Ganapathy, V. Biochem.
Biophys. Res. Commun. 1996, 229, 553.
15. Seth, P.; Fei, Y.-J.; Li, H. W.; Huang, W.; Leibach, F. H.; Ganapathy, V. J.
Neurochem. 1998, 70, 922.
16. Aydar, E.; Palmer, C. P.; Klyachko, V. A.; Jackson, M. B. Neuron 2002, 34, 399.
17. Hayashi, T.; Maurice, T.; Su, T.-P. J. Pharmacol. Exp. Ther. 2000, 293, 788.
18. Hayashi, T.; Su, T.-P. Cell 2007, 131, 596.
19. Tsai, S.-Y.; Hayashi, T.; Mori, T.; Su, T.-P. Cent. Nerv. Syst. Agents Med. Chem.
2009, 9, 184.
20. Bowen, W. D. Pharm. Acta Helv. 2000, 74, 211.
5-HT2B receptor, and negligible affinity (Ki >10
dopamine receptor, relative to 4.
lM) for the D2
The range of
r2 affinities of 16–21 and 26–31 were more widely
varied than those of 1–4 at the same site. Although the 3-methoxy-
phenethyl analog showed the greatest r2 affinity (18, r2
Ki = 14 nM), the next most prominent
r2 interactions were demon-
strated by the simple phenylpropyl and phenylbutyl derivatives
(26 and 20, respectively), with each possessing a r2 Ki value of
18 nM. Within the current series it appears that methoxy-subsitu-
tion of the phenyl ring is not inherently required for high r1
/r2
affinity, and may be generally detrimental to 2 binding. A conclu-
r
sive r2 receptor pharmacophore has not yet been proposed,
although optimal structural features are believed to resemble
those for r1 binding, thereby accounting for the myriad of high
affinity r2 ligands displaying less than 10 times subtype selectiv-
ity—including 18, 20, and 26.42
21. Kobayashi, T.; Matsuno, K.; Nakata, K.; Mita, S. J. Pharmacol. Exp. Ther. 1996,
279, 106.
22. Gonzales-Alvear, G. M.; Werling, L. L. J. Pharmacol. Exp. Ther. 1994, 271, 212.
23. Gonzales-Alvear, G. M.; Werling, L. L. Eur. J. Pharmacol. 1995, 294, 713.
24. Chaki, S.; Okuyama, S.; Ogawa, S.-I.; Tomisawa, K. Neurochem. 1998, 33, 29.
25. Debonnel, G.; de Montigny, C. Life Sci. 1996, 58, 721.
26. Bermack, J. E.; Debonnel, G. Br. J. Pharmacol. 2001, 134, 691.
27. Hashimoto, K.; Ishiwata, K. Curr. Pharm. Des. 2006, 12, 3857.
28. Collier, T. L.; Waterhouse, R. N.; Kassiou, M. Curr. Pharm. Des. 2007, 13, 51.
29. Matsuno, K.; Mita, S. C. N. S. Drug Rev. 1998, 4, 1.
30. Bermack, J. E.; Haddjeri, N.; Debonnel, G. J. Pharmacol. Exp. Ther. 2004, 310, 578.
31. Liu, X.; Banister, S. D.; Christie, M. J.; Banati, R.; Meikle, S. R.; Coster, M. J.;
Kassiou, M. Eur. J. Pharmacol. 2007, 555, 37.
32. Matsumoto, R. R.; Hourcade Potelleret, F.; Mack, A.; Pouw, B.; Zhang, Y.; Bowen,
W. D. Pharmacol. Biochem. Behav. 2004, 77, 775.
33. Takahashi, S.; Sonehara, K.; Takagi, K.; Miwa, T.; Horikomi, K.; Mita, N.; Nagase,
H.; Iizuka, K.; Sakai, K. Psychopharmacology (Berlin) 1999, 145, 295.
34. Wheeler, K. T.; Wang, L. M.; Wallen, C. A.; Childers, S. R.; Cline, J. M.; Keng, P. C.;
Mach, R. H. Br. J. Cancer 2000, 82, 1223.
35. Moussa, I. A.; Banister, S. D.; Beinat, C.; Giboureau, N.; Reynolds, A. J.; Kassiou,
M. J. Med. Chem. 2010, 53, 6228.
Considered together, the r1 affinities and subtype selectivities
of piperazines 16–21 and 26–31 (Ki = 3.1–17 nM) were comparable
to benzylic analogs 1, 3, and 4 (Ki = 2.7–16 nM). Moreover, the
affinities of 16–21 and 26–31 for the 5-HT2B receptor (Ki = 120–
628 nM) were similar to
r1-selective 1 (Ki = 497 nM); much lower
than the relatively nonselective methoxybenzylic analogs 2–4
(Ki = 9.7–28 nM). However, several ligands from the present work
showed increased off-target interaction with D2 dopamine recep-
tors compared to the micromolar affinities of 1–4 at the same site,
most notably 20, 28, 30, and 31 (Ki = 89–556 nM).
We have developed a series of subtype selective
gands by amalgamating lead structure 1 with the r1 pharmaco-
phore proposed by Glennon et al.37–39 The
receptor affinities of
these linker-elongated arylalkylpiperazines revealed that 4-
methoxyphenyl groups are generally well tolerated at 1, with
r receptor li-
r
r
36. Glennon, R. A.; Ablordeppy, S. Y.; Ismaiel, A. M.; El-Ashmawy, M. B.; Fischer, J.
B.; Burke-Howie, K. J. Med. Chem. 1994, 37, 1214.
subtype selectivities comparable to that of 1. Within this series,
37. Ablordeppy, S. Y.; Fischer, J. B.; Glennon, R. A. Bioorg. Med. Chem. 2000, 8, 2105.
38. Glennon, R. A.; El-Ashmawy, M.; Fischer, J. B.; Burke-Howie, K. J.; Ismaiel, A. M.
Med. Chem. Res. 1991, 1, 207.
39. Ablordeppy, S. Y.; Elsinga, P. H.; Fischer, J. B.; Glennon, R. A. Eur. J. Med. Chem.
1998, 33, 625.
40. Lee, S. J.; Terrazas, M. S.; Pippel, D. J.; Beak, D. J. Am. Chem. Soc. 2003, 125, 7307.
41. Kovacs, K. J.; Larson, A. A. Eur. J. Pharmacol. 1998, 350, 47.
42. Glennon, R. A. Rev. Bras. Cienc. Farm. 2005, 41, 1.
the 4-methoxy-substituted phenylpropylpiperazine 29 was identi-
fied as a high-affinity r1 receptor ligand (Ki = 3.1 nM, r2/r1 = 45),
with lower affinity for other CNS receptors. The binding profile of
compound 29 suggests that it may be suitable for the development
of a carbon-11-labeled tracer for imaging r1 receptors using posi-
tron emission tomography (PET).