A. M. Jabgunde et al. / Bioorg. Med. Chem. 19 (2011) 5912–5915
5915
methanol using 10% Pd(OH)2/C (0.060 g) at 80 psi using at 30 °C for
36 h. Work up of reaction afforded 5b as viscous oil (0.064 g, 80%).
and absorbance of the liberated p-nitrophenol was measured at
405 nm with a UV–visible Spectrophotometer. Controls were run
simultaneously in the absence of test compound. One unit of glyco-
sidase activity is defined as the amount of enzyme that hydrolyzed
Rf 0.15 (1%, NH4OH /Methanol); ½a D27
ꢀ3.3593 (c 0.16, MeOH); IR
ꢂ
(neat): 3650–2900 (broad) cmꢀ1 1H NMR (D2O) d 1.52–1.84 (2H,
;
m, H-7), 2.17–2.32 (1H, m, H-5), 2.89 (1H, dd, J = 13.6 3.9 Hz, H-
1a) 3.02–3.28 (3H, m, H-1e, H-6), 3.69 (2H, t, J = 6.6 Hz, H-8),
3.82–4.02 (3H, m, H-2, H-3, H-4); 13C NMR (D2O) d 33.1 (C-7),
33.7 (C-5), 45.9, 47.5 (C-1/C-6), 59.5 (C-8), 72.1, 75.1, 76.3 (C-2)/
(C-3)/(C-4). Reaction of compound 5b (0.043 g, 0.225 mmol) with
methanol–HCl (2 mL, 0.5 M) gave hydrochloride salt (following
the same procedure as 4c) as semisolid 5c (0.047 g, 93% yield): Rf
1 lmol of p-nitrophenol per minute under assay condition. The
inhibition constants (Ki) and the nature of the inhibition were
determined from Lineweaver Burk plots.
Acknowledgments
We are thankful to the CSIR (Project No. 01(2343)/09/EMR-II),
New Delhi, for financial support. A.M.J. is thankful to the UGC
(New Delhi). N.B.K. and S.T.C. are thankful to the CSIR (New Delhi)
for Senior Research Fellowships.
0.11 (1% NH4OH/methanol); ½a D22
ꢀ16.5 (c 0.3, MeOH); IR (neat):
ꢂ
3650–2900 (broad) cmꢀ1 1H NMR (D2O) d 1.60–1.82 (2H, m, H-
;
7), 2.36–2.49 (1H, m, H-5), 3.21 (1H, dd, J = 13.2, 4.7 Hz, H-6)
3.25–3.48 (3H, m, H-1a, H-1e, H-6), 3.68 (2H, t, J = 6.5 Hz, H-8),
3.94–4.04 (2H, narrow m, H-3, H-4), 4.40–4.53 (1H, m, H-2); 13C
NMR (D2O) d 30.2 (C-7), 33.1 (C-5), 44.9, 45.0 (C-1/C-6), 58.9 (C-
8), 69.8, 73.9, 74.2 (C-2)/(C-3)/(C-4).
Supplementary data
Supplementary data (general experimental methods. 1H and 13
NMR spectra of compounds 6, 4a, 4c, 4d, 5b, and 5c. Lineweaver–
Burk plot of 4c, 4d, with -galactosidase and 5c with -glucosi-
C
a
a
3.1.4. 4(3R,4R,5R)-3,4-Dihydroxy-5-(hydroxyethyl)-N-methyl-
piperidine (4b) and its hydrochloride salt (4d)
dase) associated with this article can be found, in the online ver-
Reaction of 6 (0.164 g, 0.348 mmol) with TFA–H2O (3 mL, 3:2)
followed by treatment with NaIO4 (0.112 g, 0.522 mmol). Follow-
ing the same reaction procedure as in 4a, afforded intermediate
Y. That on hydrogenation in dry methanol at 80 psi using 10%
Pd-C (0.050 g) at 30 °C for 40 h and work up afforded 4b as a vis-
cous oil (0.036 g, 59%). Treatment of 4b (0.036 g, 0.205 mmol) with
methanol–HCl (2 mL, 0.5 M) as in case of 4a, afforded hydrochlo-
ride salt 4d (0.038 g, 89% yield) as a semisolid. Rf 0.22 (1%, NH4OH
References and notes
1. Chakraborty, C.; Vyavahare, V. P.; Puranik, V. G.; Dhavale, D. D. Tetrahedron
2008, 64, 9574.
2. (a) Kalamkar, N. B.; Puranik, V. G.; Dhavale, D. D. Tetrahedron 2011, 67, 2773;
(b) Kalamkar, N. B.; Kasture, V. M.; Chavan, S. T.; Sabharwal, S. G.; Dhavale, D. D.
Tetrahedron 2010, 66, 8522; (c) Jadhav, V. H.; Bande, O. P.; Puranik, V. G.;
Dhavale, D. D. Tetrahedron: Asymmetry 2010, 21, 163; (d) Dhavale, D. D.; Ajish
Kumar, K. S.; Chaudhari, V. D.; Sharma, T.; Sabharwal, S. G.; Reddy, P. J. Org.
Biomol. Chem. 2005, 3, 3720; (e) Sanap, S. P.; Ghosh, S.; Jabgunde, A. M.; Pinjari,
R. V.; Gejji, S. P.; Singh, S.; Chopade, B. A.; Dhavale, D. D. Org. Biomol. Chem.
2010, 8, 3307; (f) Mane, R. S.; Ajish Kumar, K. S.; Dilip, D. D. J. Org. Chem. 2008,
73, 3284; (g) Bande, O. P.; Jadhav, V. H.; Puranik, V. G.; Dhavale, D. D.
Tetrahedron: Asymmetry 2007, 18, 1176. and references cited therein.
3. Iminosugars: From Synthesis to Therapeutic Applications; Compain, P., Martin,
O. R., Eds.; John Wiley: Chichester, UK, 2007; For recent reviews on iminosugars
see (b) De Melo, E. B.; Gomes, A. S.; Carvalho, I. Tetrahedron 2006, 62, 10277; (c)
Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515.
4. Stutz, A. E. Iminosugars as Glycosidase: Inhibitors Nojirimycin and Beyond, first
ed.; Wiley: Weinheim, Germany, 1999.
/methanol) (elongated tail observed on TLC plate); ½a D22
ꢂ
6.5 (c 1,
MeOH); IR (neat): 3650–2900 (broad) cmꢀ1 1H NMR (D2O): d
;
1.47–1.62 (1H, m, H-6), 1.63–1.78 (1H, m, H-6), 2.36–2.48 (1H,
m, H-4a), 2.86 (3H, s, NCH3), 2.96 (1H, t, J = 12.6 Hz, H-5a), 3.25
(1H, dd, J = 12.6, 3.9 Hz, H-5e), 3.32 (2H, br s, H-1a, H-1e, accidental
equivalence), 3.68 (2H, t, J = 6.5 Hz, H-7), 3.85 (1H, apparent triplet,
J = 2.7 Hz, H-5a), 4.03–4.12 (1H, narrow multiplet, J = 1.7 Hz, H-2e);
13C NMR (D2O): d 29.9, 30.1 (C-6)/(C-4), 43.2 (NCH3), 53.1 (C-5)
54.1 (C-1), 58.2 (C-7), 65.2 (C-2), 66.2 (C-3). Anal. calcd. for
C8H18ClNO3: C 45.39, H 8.57, Found C 45.36, H 8.62.
5. (a) Cox, T.; Lachmann, R.; Hollak, C.; Aerts, J.; van Weely, S.; Hrebicek, M.; Platt,
F. M.; Butters, T. D.; Dwek, R.; Moyses, C.; Gow, I.; Elstein, D.; Zimran, A. Lancet
2000, 355, 1481; (b) Johnston, P.; Feig, P.; Coniff, R.; Krol, A.; Kelley, D.;
Mooradian, A. Diabetes Care 1998, 21, 416.
3.2. General procedure for inhibition assay
6. (a) Jespersen, T. M.; Dong, W.; Sierks, M. R.; Skrydstrup, T.; Lundt, I.; Bols, M.
Angew. Chem., Int. Ed. Engl. 1994, 33, 1778; (b) Jespersen, T. M.; Bols, M.; Sierks,
M. R.; Skrydstrup, T. Tetrahedron 1994, 50, 13449.
7. Liu, H.; Liang, X.; Søhoel, H.; Bulow, A.; Bols, M. J. Am. Chem. Soc. 2001, 123,
5116.
8. (a) Ouchi, H.; Mihara, Y.; Takahata, H. J. Org. Chem. 2005, 70, 5207; (b) Mehta,
G.; Mohal, N. Tetrahedron Lett. 2000, 41, 5747; (c) Ouchi, H.; Mihara, Y.;
Watanabe, H.; Takahata, H. Tetrahedron Lett. 2004, 45, 7053.
The substrates p-nitrophenyl-
nyl-b- -glucopyranoside, p-nitrophenyl-
p-nitrophenyl-b- -galactopyranoside, p-nitrophenyl-N-acetyl-b-
glucopyranoside and p-nitrophenyl- -mannopyranoside were
procured from Sigma Chemicals Co., USA.
a
-
D
-glucopyranoside, p-nitrophe-
D
a-D
-galactopyranoside,
D
D-
a-D
Inhibition activities of 5-epi-homoisofagomine hydrochloride
4c, N-methyl-5-epi-homoisofagomine hydrochloride 4d and tri-
hydroxyazepane hydrochloride 5c were determined by measuring
the residual hydrolytic activities of the glycosidases with 2 mM
concentration of p-nitrophenyl-glycopyranoside prepared in cit-
rate buffer (0.025 M, pH 4.0) and used for assay. The test com-
9. (a) Li, H.; Liu, T.; Zhang, Y.; Favre, S.; Bello, C.; Vogel, P.; Butters, T. D.;
Oikonomakos, N. G.; Marrot, J.; Bleriot, Y. ChemBioChem 2008, 9, 253; (b) Li, H.;
Zhang, Y.; Vogel, P.; Sinay, P.; Bleriot, Y. Chem. Commun. 2007, 183; (c) Mehta,
G.; Lakshminath, S. Tetrahedron Lett. 2002, 43, 331.
10. (a) Ichikawa, Y.; Igarashi, Y.; Ichikawa, M.; Suhara, Y. J. Am. Chem. Soc. 1998,
120, 3007; (b) Kim, Y. J.; Ichikawa, M.; Ichikawa, Y. J. Org. Chem. 2000, 65, 2599;
(c) Pandey, G.; Kapur, M. Tetrahedron Lett. 2000, 41, 8821; (d) Pandey, G.;
Kapur, M. Org. Lett. 2002, 4, 3883; (e) Pandey, G.; Dumbre, S. G.; Khan, M. I.;
Shabab, M. J. Org. Chem. 2006, 71, 8481; (f) Gupta, P.; Dharuman, S.; Vankar, Y.
D. Tetrahedron: Asymmetry 2010, 21, 2966. and references cited therein.
11. In 13C NMR spectrum of compound 4d along with N–CH3 signal at d 45.8 Hz,
the C2 and C6 (–N–CH2) appeared at d 56.7 and 55.6 Hz as a downfield signals
compared to the corresponding piperidine 4c. This is due to the b-substituent
(N-substitution) effect.
pound (of various concentrations from 10
pre-incubated with the enzyme, buffered at its optimal pH, for
1 h at 37 °C (for -galactosidase at 60 °C). The enzyme reaction
was initiated by the addition of 100 L of substrate. Reaction was
terminated with the addition of 0.05 M borate buffer (pH 9.8)
lM to 1000 lM) was
a
l