The Journal of Physical Chemistry B
ARTICLE
Table 2. Some Parameters of Polymers for Normalized TPA
Cross Sections
information is available free of charge via the Internet at http://
pubs.acs.org.
a
f
Neff
E10 (eV) b E20 (eV) c
n d
δmax (GM) e δ/δmax
’ AUTHOR INFORMATION
P1
P2
40.5
36.5
2.64
2.54
2.66
3.26
3.26
3.26
1.405
1.405
1.405
2392
1938
1716
0.0032
Corresponding Author
*Phone: 86-27-62254108. Fax: 86-27-68755363. E-mail: lizhen@
whu.edu.cn, lichemlab@163.com.
0.0023
0.0022
PL-3 41.6
a The effective number of electrons in the molecules or the repeating
unit of polymers. b The transition energy between the one-photon
Author Contributions
§These authors contributed equally to this manuscript.
em
max
excited state and the ground state, which is given by E10 = 1240/λ
.
c The transition energy between the two-photon excited state and the
ground state, which is given by E20 = 2 ꢁ 1240/λmaxtp. d The refractive
index of THF. e Two-photon absorption cross sections in repeating unit,
’ ACKNOWLEDGMENT
1 GM (G€oppertꢀMayer) = 10ꢀ50 cm4 s photonꢀ1. The normalized
f
We are grateful to the National Science Foundation of China
(no. 21002075 and 21034006), the National Fundamental Key
Research Program (no. 2011CB932702), for financial support.
two-photon absorption cross sections.
of the reference molecule. Here, fluorescein was chosen as the
reference molecule.
It could be easily seen that P1 and P2 exhibited broad 2PA
bands with the maximum 2PA cross sections (δ) around 760 nm.
The maximum 2PA cross sections of polymers P1 and P2 were
2392 and 1938 GM per repeating unit, respectively. The large δ
value implied that the 2PA chromophores consisting of the
triphenylamine and pyrrole could be the effective building blocks
(repeating units). P1 exhibited a little larger δ value than P2,
indicating that, in this system, the extension of conjugation
length was more effective in enhancing 2PA cross-section than
the incorporation of electron-donating moieties, which might be
due to the strong electron-rich property of the pyrrole ring.
According to Kuzyk’s electron rules,12 the normalized 2PA
cross sections were calculated to determine the 2PA cross
sections per electron, with the data summarized in Table 2.
The trend for the normalized 2PA cross sections was similar to
the absolute values. Since PL-3 has a similar structure with the
repeating unit of polymer P2, it could be seen that the 2PA cross
sections of P2 in the repeating unit were larger than the single
chromophore, suggesting that it was a good approach for the
enhancing of the 2PA cross sections to connect the chromophore
moieties together to construct the corresponding conjugated
polymers.
’ REFERENCES
(1) (a) Hales, J. M.; Matichak, J.; Barlow, S.; Ohira, S.; Yesudas, K.;
Brꢀedas, J. L.; Perry, J. W.; Marder, S. R. Science 2010, 327, 1485.
(b) Parthenopoulos, D. A.; Rentzepis, P. M. Science 1989, 245, 843.
(c) Corredor, C. C.; Huang, Z. L.; Belfield, K. D. Adv. Mater. 2006,
18, 2910. (d) Raymond, J. E.; Bhaskar, A.; Goodson, T., III.; Makiuchi,
N.; Ogawa, K.; Kobuke, Y. J. Am. Chem. Soc. 2008, 130, 17212.
(e) Williams-Harry, M.; Bhaskar, A.; Ramakrishna, G.; Goodson, T.,
III.; Imamura, M.; Mawatari, A.; Nakao, K.; Enozawa, H.; Nishinaga, T.;
Iyoda, M. J. Am. Chem. Soc. 2008, 130, 3252. (f) Bhaskar, A.; Guda, R.;
Haley, M. M.; Goodson, T., III. J. Am. Chem. Soc. 2006, 128, 13972.
(2) (a) Denk, W.; Stricker, J. H.; Web, W. W. Science 1990, 248, 73.
(b) LaFratta, C. N.; Fourkas, J. T.; Baldacchini, T.; Farrer, R. A. Angew.
Chem., Int. Ed. 2007, 46, 6238. (c) Liu, B.; Zhang, H. L.; Liu, J.; Zhao,
Y. D.; Luo, Q. M.; Huang, Z. L. J. Mater. Chem. 2007, 17, 2921. (d) Scott,
T. F.; Kowalski, B. A.; Sullivan, A. C.; Bowman, C. N.; McLeod, R. R.
€
Science 2009, 324, 913. (e) Guzman, A. R.; Harpham, M. R.; S€uzer, O.;
Haley, M. M.; Goodson, T. G., III. J. Am. Chem. Soc. 2010, 132, 7840.
(f) Liu, J.; Lam, J. W. Y.; Tang, B. Chem. Rev. 2009, 109, 5799.
(3) (a) Cumpston, B. H.; Ananthaval, S. P.; Barlow, S.; Dyer, D. L.;
Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I.-Y. S.;
McCord-Maughon, D.; Qin, J.; R€ockel, H.; Rumi, M.; Wu, X.-L.;
Marder, S. R.; Perry, J. W. Nature 1999, 398, 51. (b) Zhou, W. H.;
Kuebler, S. M.; Braun, K. L.; Yu, T.; Cammack, J. K.; Ober, C. K.; Perry,
J. W.; Marder, S. R. Science 2002, 296, 1106. (c) Chen, Y. S.; Tal, A.;
Torrance, D. B.; Kuebler, S. M. Adv. Funct. Mater. 2006, 16, 1739.
(d) Lee, K.-S.; Kim, R. H.; Yang, D.-Y.; Park, S. H. Prog. Polym. Sci. 2008,
33, 631.
(4) (a) Wang, Y.; He, G. S.; Prasad, P. N.; Goodson, T., III. J. Am.
Chem. Soc. 2005, 127, 10128. (b) Porrꢁes, L.; Mongin, O.; Katan, C.;
Charlot, M.; Pons, T.; Mertz, J.; Blanchard-Desce, M. Org. Lett. 2004,
6, 47. (c) Yoo, J.; Yang, S. K.; Jeong, M. Y.; Ahn, H. C.; Jeon, S. J.; Cho,
B. R. Org. Lett. 2003, 5, 645.
’ CONCLUSIONS
In this work, two novel conjugated polymers, P1 and P2, with
triphenylamine as the donor and pyrrole and fluorenylene or 1,4-
dimethoxyphenylene moieties as the connecting unit, were
synthesized by WittigꢀHornerꢀEmmons olefination. They
were soluble in common organic solvents and emitted strong
one- and two-photon excitation fluorescence in dilute THF
solution. The 2PA properties were studied by the two-photon
induced fluorescence measurement technique, and the 2PA cross
sections of 2392 and 1938 GM were obtained for the polymers
P1 and P2 per repeating unit, respectively. The results showed
that the linear conjugated polymers consisting of triphenylamine
and pyrrole would be promising candidates for the further
development of novel 2PA materials.
(5) Li, Q.; Lu, C.; Zhu, J.; Fu, E.; Zhong, C.; Li, S.; Cui, Y.; Qin, J.; Li,
Z. J. Phys. Chem. B 2008, 112, 4545.
(6) (a) Li, Q.; Lu, L.; Zhong, C.; Huang, J.; Huang, Q.; Shi, J.; Jin, X.;
Peng, T.; Qin, J.; Li, Z. Chem.—Eur. J. 2009, 15, 9664. (b) Li, Q.; Lu, L.;
Zhong, C.; Shi, J.; Huang, Q.; Jin, X.; Peng, T.; Qin, J.; Li, Z. J. Phys.
Chem. B 2009, 113, 14588. (c) Li, Q.; Huang, J.; Zhong, A.; Peng, M.;
Liu, J.; Pei, Z.; Huang, Z.; Qin, J.; Li, Z. J. Phys. Chem. B 2011, 115, 4279.
(7) (a) Beverina, L.; Fu, J.; Leclercq, A.; Zojer, E.; Pacher, P.; Barlow,
S.; Stryland, E. W. V.; Hagan, D. J.; Bredas, J. L.; Marder, S. R. J. Am.
Chem. Soc. 2005, 127, 7282. (b) Chung, S. J.; Zheng, S.; Odani, T.;
Beverina, L.; Fu, J.; Padilha, L. A.; Biesso, A.; Hales, J. M.; Zhan, X.;
Schmidt, K.; Ye, A. J.; Zojer, E.; Barlow, S.; Hagan, D. J.; Stryland, E. W.;
Yi, V. Y. P.; Shuai, Z. G.; Pagani, G. A.; Bredas, J. L.; Perry, J. W.; Marder,
S. R. J. Am. Chem. Soc. 2006, 128, 14444. (c) Zheng, S.; Leclercq, A.; Fu,
J.; Beverina, L.; Padilha, L. A.; Zojer, E.; Schmidt, K.; Barlow, S.; Luo, J.;
’ ASSOCIATED CONTENT
S
Supporting Information. FT-IR spectra, TGA curves,
b
UVꢀvis spectra, PL spectra and excitation spectra of polymers,
and Frontier orbitals of the repeating units of polymers. This
8684
dx.doi.org/10.1021/jp2015484 |J. Phys. Chem. B 2011, 115, 8679–8685