Angewandte
Communications
Chemie
occur with 1g, and the tosylate 6g was the sole product
formed, without any trace of 4a (Scheme 7). Predictably, only
intermolecular N-desulfonylation occurred with 1o, and the
pyrrolizin-1-one 2o was isolated in good yield, despite the
need to heat the reaction mixture at 708C for full conversion
to occur (Scheme 7). These results fully confirmed that
enolization could be used to switch between N-desulfonyla-
tion pathways.
(+)-nor-NP25302. Further investigations to extend these
transformations to unactivated alkyne substrates and to
apply these reactions in the total synthesis of bioactive
alkaloids are ongoing in our laboratory.
Acknowledgements
As mentioned above, the pyrrolyl tosylate products 6 offer
a unique opportunity to reach more complex compounds
through palladium- or nickel-catalyzed cross-coupling reac-
tions. To demonstrate this possibility, we performed a Suzuki–
Miyaura coupling between the dihydropyrrolizine 6g and
phenyl boronic acid. Under conditions reported for some
heteroaryl tosylates,[16d] but without further optimization,
these two compounds could be coupled to produce the
arylated product 7 in good yield (Scheme 8, top). To further
We gratefully acknowledge the French Ministry of Research
and the CNRS for financial support. S.M. and N.K. thank the
French Ministry of Research for PhD fellowships. S.M. and
A.B. thank Arno Lalaut for his contribution to the synthesis
of substrates.
Keywords: desulfonylation · gold · homogeneous catalysis ·
N heterocycles · sulfonyl migration
[1] a) Gold Catalysis: An Homogeneous Approach, Catalytic Sci-
ence Series, Vol. 13 (Eds.: F. D. Toste, V. Michelet), Imperial
College Press, London, 2014; b) Modern Gold Catalyzed Syn-
thesis (Eds.: F. D. Toste, A. S. K. Hashmi), Wiley-VCH, Wein-
heim, 2012.
[2] For a comprehensive review on both homogeneous and hetero-
geneous gold catalysis, see: a) A. S. K. Hashmi, G. J. Hutchings,
Angew. Chem. Int. Ed. 2006, 45, 7896; Angew. Chem. 2006, 118,
8064; for recent reviews on homogeneous gold catalysis, see:
b) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028; c) Z.
Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev. 2016, DOI:
Org. Chem. 2011, 7, 897.
[3] a) Y.-M. Wang, A. D. Lackner, F. D. Toste, Acc. Chem. Res. 2014,
47, 889; b) S. Sengupta, X. Shi, ChemCatChem 2010, 2, 609.
[4] a) D. Pflꢀsterer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331;
b) Y. Zhang, T. Luo, Z. Yang, Nat. Prod. Rep. 2014, 31, 489; c) A.
Fꢁrstner, Angew. Chem. Int. Ed. 2014, 53, 8587; Angew. Chem.
2014, 126, 8728.
[5] a) W. Debrouwer, T. S. A. Heugebaert, B. I. Roman, C. V.
Stevens, Adv. Synth. Catal. 2015, 357, 2975; b) L. Huang, M.
Arndt, K. Goossen, H. Heydt, L. J. Goossen, Chem. Rev. 2015,
115, 2596; c) A. S. K. Hashmi, M. Bꢁhrle, M. Wçlfle, M.
Rudolph, M. Wieteck, F. Rominger, W. Frey, Chem. Eur. J.
2010, 16, 9846.
[6] For selected examples, see: a) R. M. Zeldin, F. D. Toste, Chem.
Sci. 2011, 2, 1706; b) H. Chiba, S. Oishi, N. Fujii, H. Ohno,
Angew. Chem. Int. Ed. 2012, 51, 9169; Angew. Chem. 2012, 124,
9303; c) K. Sugimoto, K. Toyoshima, S. Nonaka, K. Kotaki, H.
Ueda, H. Tokuyama, Angew. Chem. Int. Ed. 2013, 52, 7168;
Angew. Chem. 2013, 125, 7309.
[7] a) K. D. Hesp, M. Stradiotto, J. Am. Chem. Soc. 2010, 132, 18026;
b) X. Zeng, G. D. Frey, S. Kousar, G. Bertrand, Chem. Eur. J.
2009, 15, 3056; c) X. Zeng, G. D. Frey, R. Kinjo, B. Donnadieu,
G. Bertrand, J. Am. Chem. Soc. 2009, 131, 8690; d) H. Duan, S.
Sengupta, J. L. Petersen, N. G. Akhmedov, X. Shi, J. Am. Chem.
Soc. 2009, 131, 12100; e) V. Lavallo, G. D. Frey, B. Donnadieu,
M. Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2008, 47,
5224; Angew. Chem. 2008, 120, 5302.
[8] For a review on protodeauration, see: a) L.-P. Liu, G. B.
Hammond, Chem. Soc. Rev. 2012, 41, 3129; for related examples,
see: b) A. S. K. Hashmi, T. D. Ramamurthi, F. Rominger, Adv.
Synth. Catal. 2010, 352, 971; c) R. L. LaLonde, W. E. Brenzo-
vich, Jr., D. Benitez, E. Tkatchouk, K. Kelley, W. A. God-
dard III, F. D. Toste, Chem. Sci. 2010, 1, 226; d) A. S. K. Hashmi,
Scheme 8. Applications of the cyclization/N-to-O 1,5-sulfonyl migra-
tion and the N-desulfonylative cyclization. XPhos=2-dicyclohexylphos-
phanyl-2’,4’,6’-triisopropylbiphenyl.
illustrate the power of the gold-catalyzed N-desulfonylative
amination in organic synthesis, we carried out a formal
synthesis of (+)-nor-NP25302, a possible antileukemia agent
(Scheme 8, bottom).[22] For this purpose, the enantiomerically
pure pyrrolidine 1p was prepared and treated with a gold
catalyst and meta-nitrophenol under the conditions described
above. The reaction afforded the desired pyrrolizidinone
derivative 2p in good yield.
In conclusion, we have developed two unprecedented
gold(I)-catalyzed transformations that enable the efficient
formation of 1-azabicycloalkane systems from readily avail-
able N-sulfonyl azacyclic ynone derivatives. Both transfor-
mations offer a conventient access to many biologically active
molecules containing 1-azabicycloalkane motif, such as bicy-
clic azetidines, pyrrolizidine and indolizidine alkaloids. The
gold(I)-catalyzed N-desulfonylative amination is a formal
hydroamination of alkynes by sulfonamides at room temper-
ature in the presence of meta-nitrophenol (2 equiv). The 1,5-
migration of the sulfonyl protecting group from the nitrogen
to the oxygen atom provides products suitable for postfunc-
tionalization through transition metal-catalyzed cross-cou-
pling reactions. The usefulness of both methodologies has
been highlighted by the Suzuki–Miyaura cross-coupling of
a dihydropyrrolizinyl tosylate and by a formal synthesis of
4
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2016, 55, 1 – 6
These are not the final page numbers!