H. Zeng et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5870–5875
5875
Table 12
Mouse PK data for compound 21a
4. Vasioukhin, V.; Serfas, M. S.; Siyanova, E. Y.; Polonskaia, M.; Costigan, V. J.; Liu,
B.; Thomason, A.; Tyner, A. L. Oncogene 1995, 10, 349.
5. Derry, J. J.; Prins, G. S.; Ray, V.; Tyner, A. L. Oncogene 2003, 22, 4212.
6. Petro, B. J.; Tan, R. C.; Tyner, A. L.; Lingen, M. W.; Watanabe, K. Oral. Oncol. 2004,
40, 1040.
7. Castro, N. E.; Lange, C. A. Breast Cancer Res. 2010, 12, R60.
8. Ostrander, J. H.; Daniel, A. R.; Lange, C. A. Curr. Opin. Pharmacol. 2010, 10, 662.
9. Lukong, K. E.; Larocque, D.; Tyner, A. L.; Richard, S. J. Biol. Chem. 2005, 280,
38639.
Parameter (units)
IP
PO
PO
PO
Number of animals (N)
Dose (mg/kg)
AUC (0–6 h) (ng h/mL)
15
30
15
10
42
0.1
18
15
30
15
100
3388
8.1
675
1.60
4.0
7205
17.1
7513
17.9
0.5
606
1.4
176
0.42
2.0
AUC (0–6 h) (lM h)
Cmax (ng/ml)
10. Haegebarth, A.; Heap, D.; Bie, W.; Derry, J. J.; Richard, S.; Tyner, A. L. J. Biol.
Chem. 2004, 279, 54398.
Cmax
(l
M)
0.04
6.0
Tmax (h)
11. Coyle, J. H.; Guzik, B. W.; Bor, Y. C.; Jin, L.; Eisner-Smerage, L.; Taylor, S. J.;
Rekosh, D.; Hammarskjold, M. L. Mol. Cell. Biol. 2003, 2, 92.
12. Lukong, K. E.; Huot, M. E.; Richard, S. Cell. Signal. 2009, 21, 1415.
13. Weaver, A. M.; Silva, C. M. Breast Cancer Res. 2007, 9, R79.
14. Liu, L.; Gao, Y.; Qiu, H.; Miller, W. T.; Poli, V.; Reich, N. C. Oncogene 2006, 25,
4904.
(IC50 = 124 nM) and greater than 600 nM cell-based activity,
although the selectivity windows toward Aurora and Lck were
maintained.
15. Chen, H. Y.; Shen, C. H.; Tsai, Y. T.; Lin, F. C.; Huang, Y. P.; Chen, R. H. Mol. Cell.
Biol. 2004, 24, 10558.
Moving the chlorine on the benzene ring to the next position
caused the enzymatic potency to drop (Table 10, compounds
20a–d). Surprisingly, fluorine substitution at this position provided
the final top compounds (Table 11, compounds 21a–h). Almost all
of these compounds showed single-digit to low double-digit nM
cell-based activity. The enhanced activity might be due to the im-
proved hydrogen bond between the amide carbonyl group and
Arg-195 as we proposed in the binding mode in Figure 2. The selec-
tivity windows to Aurora B and Lck were both significantly im-
proved to greater than 300-fold. For compound 21a, it had clean
16. Ikeda, O.; Miyasaka, Y.; Sekine, Y.; Mizushima, A.; Muromoto, R.; Nanbo, A.;
Yoshimura, A.; Matsuda, T. Biochem. Biophys. Res. Commun. 2009, 384, 71.
17. Lukong, K. E.; Richard, S. Cell. Signal. 2008, 20, 432.
18. Shen, C. H.; Chen, H. Y.; Lin, M. S.; Li, F. Y.; Chang, C. C.; Kuo, M. L.; Settleman, J.;
Chen, R. H. Cancer Res. 2008, 68, 7779.
19. Zhang, P.; Ostrander, J. H.; Faivre, E. J.; Olsen, A.; Fitzsimmons, D.; Lange, C. A. J.
Biol. Chem. 2005, 280, 1982.
20. Qiu, H.; Zappacosta, F.; Su, W.; Annan, R. S.; Miller, W. T. Oncogene 2005, 24,
5656.
21. Kamalati, T.; Jolin, H. E.; Mitchell, P. J.; Barker, K. T.; Jackson, L. E.; Dean, C. J.;
Page, M. J.; Gusterson, B. A.; Crompton, M. R. J. Biol. Chem. 1996, 271,
30956.
22. Xiang, K.; Chatti, H.; Qiu, B.; Lakshmi, A.; Krasnitz, J.; Hicks, M.; Yu, W.; Miller,
T.; Muthuswamy, S. K. Proc. Natl. Acad. Sci. 2008, 105, 12463.
23. Kamalati, T.; Jolin, H. E.; Fry, M. J.; Crompton, M. R. Oncogene 2000, 19, 5471.
24. Aubele, M.; Walch, A. K.; Ludyga, N.; Braselmann, H.; Atkinson, M. J.; Luber, B.;
Auer, G.; Tapio, S.; Cooke, T.; Bartlett, J. M. Br. J. Cancer 2008, 99, 1089.
25. Ostrander, J. H.; Daniel, A. R.; Lofgren, K.; Kleer, C. G.; Lange, C. A. Cancer Res.
2007, 67, 4199.
CYP inhibition profile (all >20
hepatocyte-based clearance assays (human = 2.0
and rat = 5.3 L/min/mill cells). The mouse PK results are shown
l
M) and low intrinsic clearance in
lL/min/mill cells
l
in Table 12. The bioavailability of 21a was only about 5.8% and is
likely attributed to poor permeability (CACO-2: 0 nm/s). Com-
pound 21d showed a similar potency and selectivity profile as
21a. Surprisingly, 21d had much better permeability (CACO-2:
26. Harvey, A. J.; Pennington, C. J.; Porter, S.; Burmi, R. S.; Edwards, D. R.; Court, W.;
Eccles, S. A.; Crompton, M. R. Am. J. Pathol. 2009, 175, 1226.
27. Hochhaus, A. Exp. Rev. Anticancer Ther. 2007, 7, 1529.
28. (a) Brk/PTK6 kinase assay was in HTRF format and the CisBio HTRF kinease TK
(62TK0PEJ) kit was used. Assay reagents are solubilized as per kit protocol.
Compounds are diluted and pre-incubated with PTK6 enzyme (Invitrogen) in
assay plate for 30 min at RT while shaking. Substrate is added followed by ATP
to start reaction in 384 well Corning assay plates. Reaction is stopped after one
hour by addition of kit supplied XL665/antibody Cryptate solution. Plate is read
after 1 h using Pherastar Microplate reader. (b) p-Sam68 alpha-screen assay.
293 WT-PTK6 cells are plated overnight in 96 well TC plates containing 10%
DMEM with supplements and G418. Media is flicked off and complete media
containing compound is added and incubated for 3 h at 37 °C. Media is
314 nm/s) and PK profile (rat, po, 10 mpk, AUC0–6h = 31.1
lM h,
C
6h = 3.5 M). These results suggested that compounds 21a and d
l
may be appropriate tool compounds to evaluate the in vivo activity
of Brk inhibitors in xenograft breast tumor models to further vali-
date the potential of Brk/PTK6 as an oncology target.
In summary, we have discovered imidazo[1,2-a]pyrazin-8-
amines as potent Brk kinase inhibitors. The overall SAR suggested
that this type of inhibitors probably bind to the enzyme as shown
in Figure 2. Several inhibitors, with single-digit nanomolar target-
engagement cell-based activity and an appealing overall DMPK
profile, could be used as tool compounds to further validate Brk/
PTK6 as a potential target for cancer treatment.
aspirated and cells are rinsed with PBS. Cells are lysed in 50 lL lysis buffer
(50 mM Tris, pH 7.4; 250 mM NaCl; 5 mM EDTA; 50 mM NaF; 1 mM Na3VO4;
1% Nonidet P40 (NP40); 0.02% NaN3; 2 mM Na3VO4) is added and placed on a
plate shaker for 5 min. Lysates are now ready for the assay. Five micro-liter of
lysate and 5
20) were added per well (Perkin Elmer). Ten microliter of 3X PT66 acceptor
beads were then added to each well (Final = 20 g/ml, Perkin Elmer), and the
plat was put on a shaker for 90 min. Subsequently, 5 L of 6x Biotinylated-
SAM68. (Final = 0.2 g/mL, Santa Cruz) was added and the plate was out on a
shaker for 60 min before addition of 5 l of 6x Donor beads (Final: 20 g/mL).
ll dilution buffer (25 mM HEPES, pH 7.5; 100 mM NaCl; 0.01% T-
l
l
Acknowledgments
l
l
l
We would like to thank Drs. John Piwinski, Neng-Yang Shih, and
William Windsor for support of this work. We also like to thank Dr.
Li Xiao for modeling studies and Michael Starks, Jason Hill, and
Mark Pietrafitta for purification support.
The plate was put on a shaker for 30 min before reading by Envision Plate
Reader (Perkin Elmer).
29. Annis, D. A.; Nickbarg, E.; Yang, X.; Ziebell, M. R.; Whitehurst, C. E. Curr. Opin.
Chem. Biol. 2007, 11, 518.
30. (a) Belanger, D. B.; Curran, P. J.; Hruza, A.; Voigt, J.; Meng, Z.; Mandal, A. K.;
Siddiqui, M. A.; Basso, A. D.; Gray, K. Bioorg. Med. Chem. Lett. 2010, 20, 5170; (b)
Belanger, D. B.; Williams, M. J.; Curran, P. J.; Mandal, A. K.; Meng, Z.; Rainka, M.
P.; Yu, T.; Shih, N.-Y.; Siddiqui, M. A.; Liu, M.; Tevar, S.; Lee, S.; Liang, L.; Gray,
K.; Yaremko, B.; Jones, J.; Smith, E. B.; Prelusky, D. B.; Basso, A. D. Bioorg. Med.
Chem. Lett. 2010, 20, 6739; (c) Meng, Z.; Kulkarni, B. A.; Kerekes, A. D.; Mandal,
A. K.; Esposite, S. J.; Belanger, D. B.; Reddy, P. A.; Basso, A. D.; Tevar, S.; Gray, K.;
Jones, J.; Smith, E. B.; Doll, R. J.; Siddiqui, M. A. Bioorg. Med. Chem. Lett. 2011, 21,
592.
References and notes
1. Mitchell, P. J.; Barker, K. T.; Martindale, J. E.; Kamalati, T.; Lowe, P. N.; Page, M.
J.; Gusterson, B. A.; Crompton, M. R. Oncogene 1994, 9, 2383.
2. Lee, S. T.; Strunk, K. M.; Spritz, R. A. Oncogene 1993, 8, 3403.
3. Siyanova, E. Y.; Serfas, M. S.; Mazo, I. A.; Tyner, A. L. Oncogene 1994, 9, 2053.