Table 2 Chemoselectivity favouring alkylidenecyclopropanes over
alkenes and alkynesa
carbon–carbon bond formation in the case of alkylidenecyclo-
propanals whereas decarbonylation and double bond migration
are the dominant pathways in the case of 4-pentenals.2c,7b
Moreover, the reaction is chemoselective in favour of the
alkylidenecyclopropane moiety when an alkene or an alkyne
are tethered to the substrate, a fact which remained to be
established before the present study.
Yieldb
(%)
Entry Substrate
Product
1
75c,d
Financial support from EPSRC (DTA studentship to D.C.),
City of Paris (Scholarship to C.T.), RCUK (Fellowship to C.A.),
and the University of Liverpool is acknowledged. The authors
are also grateful to the EPSRC National Mass Spectrometry
Service Centre in Swansea for some HRMS measurements.
2
70c
Notes and references
1 For reviews, see: (a) M. C. Willis, Chem. Rev., 2010, 110, 725;
(b) G. C. Fu, in Modern Rhodium-Catalyzed Organic Reactions,
ed. P. A. Evans, Wiley-VCH, New York, 2005, p. 85.
2 For selected examples, see: (a) K. Sakai, J. Ido, O. Oda and
N. Nakamura, Tetrahedron Lett., 1972, 13, 1287; (b) R. C. Larock,
K. Oertle and G. F. Potter, J. Am. Chem. Soc., 1980, 102, 190;
(c) D. P. Fairlie and B. Bosnich, Organometallics, 1988, 7, 936;
(d) A. D. Aloise, M. E. Layton and M. D. Shair, J. Am. Chem. Soc.,
2000, 122, 12610; (e) Y. Sato, Y. Oonishi and M. Mori, Angew.
Chem., Int. Ed., 2002, 41, 1218; (f) K. Tanaka and G. C. Fu, J. Am.
Chem. Soc., 2001, 123, 11492; (g) H. D. Bendorf, C. M. Colella,
E. C. Dixon, M. Marchetti, A. N. Matunokis, J. D. Musselman and
T. A. Tiley, Tetrahedron Lett., 2002, 43, 7031; (h) K. Takeishi,
K. Sugishima, K. Sasaki and K. Tanaka, Chem.–Eur. J., 2004,
10, 5681; (i) M. M. Coulter, P. K. Dornan and V. M. Dong,
J. Am. Chem. Soc., 2009, 131, 6932.
3
4
75
99e
3 (a) C. Aıssa and A. Furstner, J. Am. Chem. Soc., 2007, 129, 14836;
(b) D. Crepin, J. Dawick and C. Aıssa, Angew. Chem., Int. Ed.,
2010, 49, 620.
4 (a) R. Campbell Jr., C. F. Lochow, K. P. Vora and R. G. Miller,
J. Am. Chem. Soc., 1980, 102, 5824–5830; (b) D. P. Fairlie and
B. Bosnich, Organometallics, 1988, 7, 946.
5
58
5 I. F. D. Hyatt, H. K. Anderson, A. T. Morehead Jr. and
A. L. Sargent, Organometallics, 2008, 27, 135.
6 (a) R. M. Beesley, C. K. Ingold and J. F. Thorpe, J. Chem. Soc.
Trans., 1915, 107, 1080; (b) M. E. Jung and J. Gervay, J. Am.
Chem. Soc., 1991, 113, 224.
a
b
[Rh((ꢀ)-BINAP)]BF4 (10 mol%),8 acetone, 21 1C, 12 h. Isolated
c
yields. Yield over two steps including Swern oxidation for the
e
preparation of the aldehyde. 4 h. NMR yield after 1 h.
d
7 (a) B. R. James and C. G. Young, J. Chem. Soc., Chem. Commun.,
1983, 1215; (b) T. Sattelkau and P. Eilbracht, Tetrahedron Lett.,
1998, 39, 9647; (c) M. Rolandsgard, S. Baldawi, D. Sirbu,
V. Bjørnstad, C. Rømming and K. Undheim, Tetrahedron, 2005,
61, 4129; (d) S. Mukherjee and B. List, J. Am. Chem. Soc., 2007,
129, 11336; (e) V. Bjørnstad and K. Undheim, Synthesis, 2008, 962.
8 Representative procedure: a Teflon-screw Schlenk flask equipped
with a small stirring bar was charged with [Rh(nbd)2]BF4 (4.4 mg,
0.0117 mmol), (ꢀ)-BINAP (7.8 mg, 0.0117 mmol), and acetone
(2.3 mL) under N2 before bubbling H2 (4.8 mL, 0.199 mmol) via a
syringe before closing the flask under N2. After stirring for 1h at
room temperature, this solution was added to aldehyde 1a (28 mg,
0.117 mmol) in another Teflon-screw Schlenk flask before closing
the flask under N2. After stirring for 12h at room temperature, the
mixture was allowed to cool before evaporation. Purification by
flash chromatography (petroleum ether/ethyl acetate: 250/1) gave
ketone 2 (25 mg, 89%) as white solid.
chemoselectivity and cycloheptenone 15f was obtained in good
isolated yield (Scheme 5), whilst catalysts prepared with other
bisphosphines (e.g. dppe, dppp, dppb) were mostly inactive.11
In conclusion, we have demonstrated that rhodium-catalysed
intramolecular hydroacylation of a,a-disubstituted 4-alkylidene-
cyclopropanals is a smooth process in contrast to the same
reaction conducted on a,a-disubstituted 4-pentenals. In both
cases, a pentarhodacycle intermediate is likely formed prefer-
entially. This intermediate can rearrange toward productive
9 M. L. Grachan, M. T. Tudge and E. N. Jacobsen, Angew. Chem.,
Int. Ed., 2008, 47, 1469.
10 A. J. Mancuso, S.-L. Huang and D. Swern, J. Org. Chem., 1978,
43, 2980.
11 dppf = 1,10- bis(diphenylphosphino)-ferrocene, dppe = 1,2-bis-
(diphenylphosphino)-ethane, dppp = 1,3-bis(diphenylphosphino)-
propane, dppb = 1,4-bis(diphenylphosphino)-butane. We thank
one of the referees for suggesting this experiment.
Scheme 5 Alternative reaction conditions for chemoselective hydro-
acylation of alkylidenecyclopropanes in the presence of simple internal
alkyne.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10957–10959 10959