ORGANIC
LETTERS
2011
Vol. 13, No. 22
6050–6053
Design, Synthesis, and Properties of
Boat-Shaped Glucopyranosyl Nucleic Acid
Kazuto Mori, Tetsuya Kodama,* and Satoshi Obika*
Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita,
Osaka 565-0871, Japan
kodama@phs.osaka-u.ac.jp; obika@phs.osaka-u.ac.jp
Received September 17, 2011
ABSTRACT
A boat-shaped glucopyranosyl nucleic acid (BsNA) was synthesized to investigate the possibility that the lean of a nucleobase is a factor affecting
duplex-forming ability of oligonucleotides. From the crystal structure ofa BsNAnucleoside andthe thermalstabilityofduplex oligonucleotides,itwas
found that not only the lean of the base but also the rotation angle of the glycosidic bond axis were important factors in a stable duplex formation.
Much effort to develop nucleic acid therapeutics has
been made to date.1 Natural oligonucleotides (ONs) are
not appropriate for therapeutic applications because they
do not have enough target specificity, resistance toward
nucleases, or cell membrane permeability. To improve
their properties, nucleic acids have been chemically mod-
ified, and several clinical trials are currently being con-
ductedwith these artificial nucleic acids.1 Inaddition to use
in therapy, chemically modified ONs are also used in many
other areas, such as nanotechnology,2 diagnostics,3 and
drug target validation and gene function determination.4
For these reasons, chemically modifiedONs haveattracted
increasing attention.
We and other groups have developed numerous 20,40-
bridged nucleic acid (20,40-BNA)5/locked nucleic acid
(LNA)6 analogues7,8 whose sugar moieties are fixed in the
North-type (C30-endo) conformation, similar to a nucleo-
tide in an A-type RNA duplex, by a bridge between the
C20- and C40-positions. Because of this structural pre-
organization,9 these analogues have high duplex-forming
ability for complementary RNA. We have attempted to
create additional artificial nucleic acids that form stable
duplexes with complementary strands. However, there
have been few BNA analogues8b,c,e,11 that have affinities
for RNA as high as the original 20,40-BNA/LNA, which
remains the most promising BNA derivative even now.
20,40-BNACOC, which has the sugar conformation closest
(1) (a) Chen, X.; Dudgeon, N.; Shen, L.; Wang, J. H. Drug Discovery
Today 2005, 10, 587. (b) Juliano, R.; Bauman, J.; Kang, H.; Ming, X.
Mol. Pharmaceutics 2009, 6, 686. (c) Yamamoto, T.; Nakatani, M.;
Narukawa, K.; Obika, S. Future Med. Chem. 2011, 3, 339. (d) Shukla, S.;
Sumaria, C. S.; Pradeepkumar, P. I. ChemMedChem 2010, 5, 328.
(2) (a) Bandy, T. J.; Brewer, A.; Burns, J. R.; Marth, G.; Nguyen, T.;
Stulz, E. Chem. Soc. Rev. 2011, 40, 138. (b) Endo, M.; Sugiyama, H.
ChemBioChem 2009, 10, 2420.
(3) (a) Singh, R. P.; Oh, B. K.; Choi, J. W. Bioelectrochemistry 2010,
79, 153. (b) Cerqueira, L.; Azevedo, N. F.; Almeida, C.; Jardim, T.;
Keevil, C. W.; Vieira, M. J. Int. J. Mol. Sci. 2008, 9, 1944. (c) MacAskill,
A.; Crawford, D.; Graham, D.; Faulds, K. Anal. Chem. 2009, 81, 8134.
(4) Ravichandran, L. V.; Dean, N. M.; Marcusson, E. G. Oligonu-
cleotides 2004, 14, 49.
(7) For the BNA or LNA analogues reported before 2010, see the
following review. Obika, S.; Rahman, S. M. A.; Fujisaka, A.; Kawada,
Y.; Baba, T.; Imanishi, T. Heterocycles 2010, 81, 1347.
(8) For the BNA or LNA analogues not included in ref 7, see the
following references. (a) Zhou, C.; Liu, Y.; Andaloussi, M.; Badgujar,
N.; Plashkevych, O.; Chattopadhyaya, J. J. Org. Chem. 2009, 74, 118. (b)
Prakash, T. P.; Siwkowski, A.; Allerson, C. R.; Migawa, M. T.; Lee, S.;
Gaus, H. J.; Black, C.; Seth, P. P.; Swayze, E. E.; Bhat, B. J. Med. Chem.
2010, 53, 1636. (c) Seth, P. P.; Vasquez, G.; Allerson, C. A.; Berdeja, A.;
Gaus, H.; Kinberger, G. A.; Prakash, T. P.; Migawa, M. T.; Bhat, B.;
Swayze, E. E. J. Org. Chem. 2010, 75, 1569. (d) Nishida, M.; Baba, T.;
Kodama, T.; Yahara, A.; Imanishi, T.; Obika, S. Chem. Commun. 2010,
46, 5283. (e) Seth, P. P.; Allerson, C. R.; Berdeja, A.; Siwkowski, A.;
Pallan, P. S.; Gaus, H.; Prakash, T. P.; Watt, A. T.; Egli, M.; Swayze,
E. E. J. Am. Chem. Soc. 2010, 132, 14942. (f) Mori, K.; Kodama, T.;
Baba, T.; Obika, S. Org. Biomol. Chem. 2011, 9, 5272.
(5) Obika, S.; Nanbu, D.; Hari, Y.; Morio, K.; In, Y.; Ishida, T.;
Imanishi, T. Tetrahedron Lett. 1997, 38, 8735.
(6) Singh, S. K.; Nielsen, P.; Koshkin, A. A.; Wengel, J. Chem.
Commun. 1998, 455.
(9) Kool, E. T. Chem. Rev. 1997, 97, 1473.
r
10.1021/ol2025229
Published on Web 10/17/2011
2011 American Chemical Society