5348
T. Takanami et al. / Tetrahedron Letters 52 (2011) 5345–5348
(50 mg, 0.2 mmol), and the mixture was stirred at 140 °C for 2 h. After
References and notes
completion of the reaction (monitored by TLC), the solution was poured into
water (80 mL). The resulting precipitate was collected and washed with water
and MeOH to give the Ni(II) complex in a nearly quantitative yield.
1. For a review, see: The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard,
R., Eds.; Academic Press: San Diego, 1999–2003; Vol. 1-20,. and some recent
examples, see Refs. 2–5.
Complex Ni-3aa: 1H NMR (CDCl3) d: 11.98 (1H, s, –CHO), 9.75 (2H, d,
J = 5.1 Hz), 8.89 (2H, d, J = 5.1 Hz), 8.82 (2H, d, J = 5.1 Hz), 8.65 (2H, d,
J = 5.1 Hz), 7.95–7.89 (4H, m), 7.71–7.69 (6H, m), 7.07 (1H, s, O@C–CH@C–),
3.50–3.44 (2H, m), 2.97–2.93 (2H, m); IR (KBr): 1705, 1674, 1605, 1566, 1439,
1358, 1277, 1161, 1076, 1007, 949, 791, 752, 702 cmꢀ1; UV/vis (CH2Cl2) kmax
2. (a) Lu, H.; Zhang, X. P. Chem. Soc. Rev. 2011, 40, 1899; (b) Che, C.-M.; Lo, V. K.-Y.;
Zhou, C.-Y.; Huang, J.-S. Chem. Soc. Rev. 2011, 40, 1950; (c) Morandi, B.; Cheang,
J.; Carreira, E. M. Org. Lett. 2011, 13, 3080; (d) Dogutan, D. K.; McGuire, R., Jr.;
Nocera, D. G. J. Am. Chem. Soc. 2011, 133, 9178; (e) Usanov, D. L.; Yamamoto, H.
Angew. Chem., Int. Ed. 2010, 49, 8169; (f) Fackler, P.; Berthold, C.; Voss, F.; Bach,
T. J. Am. Chem. Soc. 2010, 132, 15911; (g) Morandi, B.; Carreira, E. M. Angew.
Chem., Int. Ed. 2010, 49, 938; (h) Che, C.-M.; Huang, J.-S. Chem. Commun. 2009,
3996; (i) Suda, K.; Nakajima, S.; Satoh, Y.; Takanami, T. Chem. Commun. 2009,
1255.
3. (a) Zhou, C.; Liu, Q.; Xu, W.; Wang, C.; Fang, X. Chem. Commun. 2011, 47, 2982;
(b) Chaleix, V.; Sol, V.; Krausz, P. Tetrahedron Lett. 2011, 52, 2977; (c)
Gianferrara, T.; Bergamo, A.; Bratsos, I.; Milani, B.; Spagnul, C.; Sava, G.;
Alessio, E. J. Med. Chem. 2010, 53, 4678.
4. (a) Ishizuka, T.; Sinks, L. E.; Song, K.; Hung, S.-T.; Nayak, A.; Clays, K.; Therien,
M. J. J. Am. Chem. Soc. 2011, 133, 2884; (b) Liu, J.-Y.; El-Khouly, M. E.; Fukuzumi,
S.; Ng, D. K. P. Chem. Eur. J. 2011, 17, 1605; (c) Song, J.; Aratani, N.; Heo, J. H.;
Kim, D.; Shinokubo, H.; Osuka, A. J. Am. Chem. Soc. 2010, 132, 11868; (d) Bessho,
T.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau, E. W.-G.; Grätzel, M. Angew. Chem., Int.
Ed. 2010, 49, 6646.
5. (a) Lee, C.-H.; Yoon, H.; Kim, P.; Cho, S.; Kim, D.; Jang, W.-D. Chem. Commun.
2011, 47, 4246; (b) Dogutan, D. K.; Kwabena Bediako, D.; Teets, T. S.; Schwalbe,
M.; Nocera, D. G. Org. Lett. 2010, 12, 1036; (c) Reeve, J. E.; Collins, H. A.; De Mey,
K.; Kohl, M. M.; Thorley, K. J.; Paulsen, O.; Clays, K.; Anderson, H. L. J. Am. Chem.
Soc. 2009, 131, 2758; (d) Berova, N.; Pescitelli, G.; Petrovica, A. G.; Pronic, G.
Chem. Commun. 2009, 5958; (e) Hembury, G. A.; Borovkov, V. V.; Inoue, Y. Chem.
Rev. 2008, 108, 1.
(log e): 423 (5.2), 549 (4.1), 596 (4.2) nm; HRMS (EI): calcd for C38H24N4NiO2:
626.1253; found: 626.1252.
Complex Ni-4aa: 1H NMR (CDCl3) d: 11.88 (1H, s, –CHO), 9.68 (2H, d,
J = 5.1 Hz), 9.09 (2H, d, J = 5.1 Hz), 8.71 (2H, d, J = 5.1 Hz), 8.57 (2H, d,
J = 5.1 Hz), 7.92–7.86 (4H, m), 7.71–7.62 (6H, m), 5.31–5.20 (1H, m, O@C–
CH2–CH–Por), 3.56 (1H, dd, J = 19.5 and 11.5 Hz, O@C–CHH–CH–Por), 3.33 (1H,
dd, J = 19.5 and 10.0 Hz, O@C–CHH–CH–Por), 3.30–3.26 (1H, m), 3.09–3.02 (1H,
m), 2.97–2.90 (1H, m), 2.81–2.71 (1H, m); IR (KBr): 1742, 1673, 1541, 1441,
1354, 1236, 1162, 1077, 1009, 949, 793, 756, 704 cmꢀ1; UV/vis (CH2Cl2) kmax
(log e): 426 (5.3), 556 (4.0), 602 (4.2) nm; HRMS (EI): calcd for C38H26N4NiO2:
628.1409; found: 628.1406.
13. General procedure for the one-pot preparation of meso activated alkenyl-
substituted meso-formylporphyrins: An oven-dried 100 mL three-necked flask
equipped with a magnetic stirring bar, a reflux condenser, and rubber septum
was charged with a porphyrin 1 (0.2 mmol). The flask was evacuated and
flushed with argon (three times), and then absolute THF (80 mL) was added. To
the solution was added an ethereal solution of PyMe2SiCH2Li (prepared by
adding 1.3 mL of 1.58 M tBuLi in pentane to
a solution of 2.4 mmol 2-
pyridyltrimethylsilane in 3 mL of ether, followed by stirring at ꢀ78 °C for 2 h)5
via a cannula at ꢀ78 °C. After being stirred at ꢀ78 °C for 5 min, the cooling bath
was removed and the mixture was stirred at room temperature. The reaction
was complete within 3 h, having been monitored by TLC. Upon completion of
the reaction, the mixture was cooled to ꢀ78 °C, and then an ethereal solution
of an enone or an alkenoate (3 mmol) and TMSCl (4 mmol, 0.51 mL) was added.
After being stirred at ꢀ78 °C for 10 min, the mixture was warmed to room
temperature, stirred for 3 h, and recooled to 0 °C. To the cooled mixture was
added 10 mL of 0.1 M HCl. The resulting solution was stirred for 10 min at 0 °C,
and then DDQ (2 mmol, 454 mg) was added. After being stirred at room
temperature for 12 h, the mixture was concentrated under a reduced pressure.
The resulting residue was dissolved in CH2Cl2 (ca. 100 mL) and the solution
was poured into brine. The organic layer was separated and the aqueous layer
was extracted with CH2Cl2. The organic layers were combined, concentrated in
vacuo, and subjected to chromatography on silica gel using 0–10% hexane/
CH2Cl2 as an eluent. The eluate was evaporated and the resulting solid was
purified by recrystallization from CH2Cl2/hexane to afford the meso activated
alkenyl-substituted meso-formylporphyrin 3.
6. For recent reviews of functionalization reactions of porphyrins, see: (a) Senge,
M. O. Chem. Commun. 2011, 47, 1943; (b) Shinokubo, H.; Osuka, A. Chem.
Commun. 2009, 1011.
7. We have reported several functionalization reactions of porphyrins: (a)
Takanami, T.; Wakita, A.; Matsumoto, J.; Sekine, S.; Suda, K. Chem. Commun.
2009, 101; (b) Takanami, T.; Wakita, A.; Sawaizumi, A.; Iso, K.; Onodera, H.;
Suda, K. Org. Lett. 2008, 10, 685; (c) Takanami, T.; Matsumoto, J.; Kumagai, Y.;
Sawaizumi, A.; Suda, K. Tetrahedron Lett. 2009, 50, 68; (d) Takanami, T.;
Yotsukura, M.; Inoue, W.; Inoue, N.; Hino, F.; Suda, K. Heterocycles 2008, 76,
439; (e) Takanami, T.; Hayashi, M.; Chijimatsu, H.; Inoue, W.; Suda, K. Org. Lett.
2005, 7, 3937; (f) Takanami, T.; Hayashi, M.; Hino, F.; Suda, K. Tetrahedron Lett.
2003, 44, 7353.
8. Multi-step total syntheses of asymmetrically substituted porphyrins have been
reported, see: (a) Lindsey, J. S. Acc. Chem. Res. 2010, 43, 300; (b) Fazekas, M.;
Pintea, M.; Senge, M. O.; Zawadzka, M. Tetrahedron Lett. 2008, 49, 2236.
9. Porphyrin modification based on the SNAr strategy with organolithium
reagents was pioneered by the research group of Senge, see: (a) Senge, M. O.
Acc. Chem. Res. 2005, 38, 733; (b) Senge, M. O.; Hatscher, S. S.; Wiehe, A.;
Dahms, K.; Kelling, A. J. Am. Chem. Soc. 2004, 126, 13634; (c) Dahms, K.; Senge,
M. O.; Bakar, M. B. Eur. J. Org. Chem. 2007, 3833; (d) Senge, M. O.; Richter, J.;
Bischoff, I.; Ryan, A. Tetrahedron 2010, 66, 3508. and references cited therein.
10. Itami, K.; Kamei, T.; Mitsudo, K.; Nokami, T.; Yoshida, J. J. Org. Chem. 2001, 66,
3970.
11. Neutralization of the reaction mixture prior to the addition of DDQ is critical to
obtain the desired product 3aa: when the reaction was conducted without
neutralization, significant amounts of oligomeric side products were noted.
12. NMR data were not available for 4aa due to its poor solubility. Therefore, the
structural differences between the enone moiety directly coupled adduct 3aa
and the Michael type adduct 4aa were confirmed by the spectroscopic data of
the corresponding Ni(II) complexes Ni-3aa and Ni-4aa. The procedure for the
conversion of the free bases to the Ni(II) complexes is as follows: To a solution
of a free base porphyrin (0.04 mmol) in DMF (3 mL) was added Ni(OAc)2ꢁ4H2O
14. In the cases of the preparation of 3ag and 3fb, impurities could not be removed
from the crude products by recrystallization. These free bases, therefore, were
further converted to their Ni(II) complexes, Ni-3ag and Ni-3fb, using a similar
procedure for the preparation of Ni-3aa and Ni-4aa, see Ref. 12.
15. All the compounds reported herein showed spectral data consistent with the
assigned structures, see Supplementary data.
16. All our attempts for isolating the porphodimethene intermediates 6 were
unsuccessful probably because of their high susceptibility to moisture and
oxygen in atmosphere.
17. It is known that DDQ can serve as an oxidant for the conversion of enol silyl
ethers into enones, see: Bhattacharya, A.; DiMichele, L. M.; Dolling, U.-H.;
Grabowski, E. J. J.; Grenda, V. J. J. Org. Chem. 1989, 54, 6118.
18. Preparation of meso activated alkenyl substituted porphyrins has been
reported, see: (a) Yeung, M.; Ng, A. C. H.; Drew, M. G. B.; Vorpagel, E.;
Breitung, E. M.; McMahon, R. J.; Ng, D. K. P. J. Org. Chem. 1998, 63, 7143; (b)
Locos, O. B.; Arnold, D. P. Org. Biomol. Chem. 2006, 4, 902; (c) Horn, S.; Sergeeva,
N. N.; Senge, M. O. J. Org. Chem. 2007, 72, 5414; (d) Sergeeva, N. N.; Bakar, M. B.;
Senge, M. O. J. Org. Chem. 2009, 74, 1488.