each of the possible isomers [(E,E,E), (E,E,Z), (E,E,Z),
(Z,Z,Z)] can be accessed as the major component in a
photostationary state (PSS) selectively by choosing the
right conditions.14 Although all isomers can be distin-
guished and analyzed by NMR, the similarity in the
absorption property rules out an easy analysis by UV-
spectroscopy. Therefore, an additional source of informa-
tion enabling an easy readout has to be introduced in the
macrocycle. If a chiral entity would be placed in the
cyclotrisazobenzene, this information should be highly
dependent on the conformation of the different azoben-
zenes allowing a facile analysis via circular dichroism (CD)
spectroscopy. There have been reports on the combination
of a monomeric azobenzene unit with chiral molecules
and the photochromic behavior of such a system.15 In
these cases, though, only two states could be addressed.
To validate the concept a chiral biphenyl was chosen as
a chiral source leading to the target compound 1
(Figure 1).
according to a procedure described by Rossnagel and
co-workers.17 Instead of using explosive acetyl nitrate, the
nitrating reagent was prepared in situ from fuming nitric
acid and acetic anhydride. Chiral resolution was also done
as described in the procedure from Moyer and Adams
by a recrystallization of the diastereomeric D-camphorsul-
fonic acid salt. The absolute configuration of 3,30-diami-
nobimesityl (3) was already assigned by Bloch et al.18
Both enantiomeric forms and the racemic mixture were
transformed to the corresponding macrocycle 1 in three
convenient steps. The Mills reaction with 1-bromo-3-
[(methoxymethoxy)methyl]-5-nitrosobenzene (4) pro-
duced bisazocompund 5 in a high yield of 90% (for rac-5;
90% for (S)-5 and 89% for (R)-5). After Suzuki reaction
with boronic acid pinacolate 6, the obtained diamine was
oxidatively cyclized using Pb(OAc)4 to furnish macrocycle
1 (41ꢀ42%).
Scheme 1. Synthesis of Both Enantiomers and the Racemic
Mixture of Macrocycle 1
Figure 1. (R) and (S) enantiomer of bimesitylcyclotrisazobiphe-
nyl macrocycle 1.
Chiral macrocycle 1 was prepared in three steps start-
ing with the literature known 3,30-diaminobimesityl (3)
(Scheme 1), which was first synthesized by Moyer and
Adams from iodomesitylene.16 Their procedure included
an Ullmann coupling of iodomesitylene followed by nitra-
tion with acetylnitrate and reduction of the nitro groups
with zinc powder. We replaced the Ullmann coupling by a
Scholl reaction of mesitylene (2) with ferric chloride,
The absorption spectrum of 1 showed the characteristic
features observed for azobenzenes with three maxima: one
at 444 nm, corresponding to the nꢀπ* transition; one at
(13) (a) Rau, H.; Lueddecke, E. J. Am. Chem. Soc. 1982, 104, 1616.
(b) Tamaoki, N.; Koseki, K.; Yamaoka, T. Angew. Chem. 1990, 102, 66.
Angew. Chem., Int. Ed. Engl. 1990, 29, 105. (c) Tamaoki, N.; Yamaoka,
T. J. Chem. Soc., Perkin Trans. 2 1991, 873. (d) Norikane, Y.; Kitamoto,
K.; Tamaoki, N. J. Org. Chem. 2003, 68, 8291. (e) Norikane, Y.;
Tamaoki, N. Org. Lett. 2004, 6, 2595. (f) Norikane, Y.; Katoh, R.;
Tamaoki, N. Chem. Commun. 2008, 1898. (g) Mathews, M.; Tamaoki, N.
(10) (a) Natansohn, A.; Rochon, P. Chem. Rev. 2002, 102, 4139. (b)
Barrett, C. J.; Mamiya, J.; Yager, K. G.; Ikeda, T. Soft Matter 2007, 3,
1249. (c) For an azobenzene-containing foldamer, see: Khan, A.; Kaiser,
C.; Hecht, S. Angew. Chem. 2006, 118, 1912. Angew. Chem., Int. Ed.
2006, 45, 1878. (d) Yu, Z.; Hecht, S. Angew. Chem. 2011, 123, 1678.
Angew. Chem., Int. Ed. 2011, 50, 1640. (e) Browne, W. R.; Feringa, B. L.
Annu. Rev. Phys. Chem. 2009, 60, 407. (f) Wang, S.; Song, Y.; Jiang, L. J.
Photochem. Photobiol. C 2007, 8, 18. (g) Wang, Y.; Ge, X.; Schull, G.;
Berndt, R.; Bornholdt, C.; Koehler, F.; Herges, R. J. Am. Chem. Soc.
€
J. Am. Chem. Soc. 2008, 130, 11409. (h) Muri, M.; Schuermann, K. C.;
De Cola, L.; Mayor, M. Eur. J. Org. Chem. 2009, 2562. (i) Reuter, R.;
Hostettler, N.; Neuenburg, M.; WegnerH. A. Eur. J. Org. Chem. 2009,
5647. (j) Reuter, R.; Hostettler, N.; Neuenburg, M.; Wegner, H. A. Chimia
2010, 64, 180. (i) For a recent review, see: Reuter R.; Wegner, H. A. Chem.
Commun. 2011, Advance Article, DOI: 10.1039/C1CC13773E.
(14) Reuter, R.; Wegner, H. A. Chem.;Eur. J. 2011, 17, 2987.
(15) (a) Haberhauer, G.; Kallweit, C. Angew. Chem. 2010, 122, 2468.
Angew. Chem., Int. Ed. 2010, 49, 2418. (b) Kawamoto, M.; Shiga, N.;
Takaishi, K.; Yamashita, T. Chem. Commun. 2010, 46, 8344. (c)
Takaishi, K.; Kawamoto, M.; Tsubaki, K.; Furuyama, T.; Muranaka,
A.; Uchiyama, M. Chem.;Eur. J. 2011, 17, 1778.
€
€
2008, 130, 4218. (h) Iwicki, J.; Ludwig, E.; Kallane, M.; Buck, J.; Kohler,
F.; Herges, R.; Kipp, L.; Roßnagel, K. Appl. Phys. Lett. 2010, 97,
063112.
(11) Cisnetti, F.; Ballardini, R.; Credi, A.; Gandolfi, M. T.; Masiero,
S.; Negri, F.; Pieraccini, S.; Spada, G. P. Chem.;Eur. J. 2004, 10, 2011.
(16) Moyer, W. W.; Adams, R. J. Am. Chem. Soc. 1929, 51, 630.
(17) Fischer, E.; Hess, H.; Lorenz, T.; Musso, H.; Rossnagel, I.
Chem. Ber. 1991, 124, 783.
ꢀ
ꢀ
(12) (a) Bleger, D.; Dokic, J.; Peters, M.; Grubert, L.; Saalfrank, P.;
Hecht, S. J. Phys. Chem. B 2011, 115, 9930. (b) For a recent example of
peptides controlled by two isolated azobenzene units, see: Samanta, S.;
Woolley, G. A. ChemBioChem 2011, 12, 1712.
ꢀ
(18) Bloch, M.; Lau, N.; Musso, H.; Zahorszky, U.-I. Chem. Ber
1972, 105, 1790.
Org. Lett., Vol. 13, No. 21, 2011
5909