2510
Z. Ma, J.-S. Taylor / Bioorg. Med. Chem. 9 (2001) 2501–2510
ion at 400 nm or the fluorescence emission of 7-hydro-
xycoumarin at 452 nm (lEx=350 nm) as a function of
time. In a typical run, 5 mL of the ester (8 mM in aceto-
nitrile for the phenyl esters and 200 mM in acetonitrile for
the 7-hydroxycoumarin esters) were added to a cuvette
containing 400 mL of imidazole buffer (0.004–0.6 M),
capped and mixed by inverting several times. The pseudo
first-order rate constant for each concentration of imi-
dazole was obtained by linear least squares fitting of
ln(A ꢀA) or ln(F ꢀF) versus time. The rate constants
11. Senter, P. D.; Svensson, H. P. Adv. Drug Deliv. Rev. 1996,
22, 341.
12. Dubowchik, G. M.; Walker, M. A. Pharmacol. Ther.
1999, 83, 67.
13. Ma, Z.; Taylor, J.-S. Proc. Natl. Acad. Sci. U.S.A. 2000,
97, 11159.
14. Golub, T. R.; Slonim, D. K.; Tamayo, P.; Huard, C.;
Gaasenbeek, M.; Mesirov, J. P.; Coller, H.; Loh, M. L.;
Downing, J. R.; Caligiuri, M. A.; Bloomfield, C. D.; Lander,
E. S. Science 1999, 286, 531.
15. Gerhold, D.; Rushmore, T.; Caskey, C. T. Trends Bio-
chem. Sci. 1999, 24, 168.
16. Antao, V. P.; Tinoco, I., Jr. Nucleic Acids Res. 1992, 20,
819.
17. Bender, M. L. J. Am. Chem. Soc. 1957, 79, 1652.
18. Bruice, T. C.; Schmir, G. L. J. Am. Chem. Soc. 1957, 79,
1663.
1
1
were then plotted against total imidazole concentration
to get ko, the first order rate constant for the uncata-
lyzed hydrolysis reaction, and kIm, the second-order rate
constant for catalysis by imidazole buffer.
19. Bruice; Sturtevant, J. Am. Chem. Soc. 1959, 81, 2860.
20. Bender, M. L.; Turnquest, B. W. J. Am. Chem. Soc. 1957,
79, 1656.
21. Gesson, J. P.; Jacquesy, J. C.; Mondon, M.; Petit, P.;
Renoux, B.; Andrianomenjanahary, S.; Dufat-Trinh Van, H.;
Koch, M.; Michel, S.; Tillequin, F.; Florent, J. C.; Monneret,
C.; Bosslet, K.; Czech, J.; Hoffmann, D. Anti-C Drug Des.
1994, 9, 409.
22. Lougerstay-Madec, R.; Florent, J.-C.; Monneret, C.;
Nemati, F.; Poupon, M. F. Anti-Cancer Drug Des. 1998, 13,
995.
23. Madec-Lougerstay, R.; Florent, J.-C.; Monneret, C. J.
Chem. Soc., Perkin Trans. 1, 1369.
24. Ueda, Y.; Matiskella, J. D.; Mikkilineni, A. B.; Farina,
V.; Knipe, J. O.; Rose, W. C.; Casazza, A. M.; Vyas, D. M.
Bioorg. Med. Chem. Lett. 1995, 5, 247.
25. Hovinen, J.; Guzaev, A.; Azhayeva, E.; Azhayev, A.;
Lonnberg, H. J. Org. Chem. 1995, 60, 2205.
26. SantaLucia, J., Jr. Proc. Natl. Acad. Sci. U.S.A. 1998, 95,
1460.
Hydrolysis of esters in human serum
The hydrolysis of the coumarin esters 9c, 11c, 12c, and
13c was followed in a SPEX Fluoromax spectro-
fluorimeter at the following wavelengths: lEx=350 nm,
lEm=452 nm. In a typical run, 3 mL of coumarin ester
solution (7 mM in acetonitrile) was added to 400 mL of
Human serum, pH 8.3 (Innovative Research Inc.) in a
cuvette. The cuvette was capped, inverted several times
for thorough mixing, placed in a cell block and record-
ing began. The appearance of 7-hydroxycoumarin was
monitored at 452 nm at room temperature. The same
procedure was followed for monitoring the hydrolysis
of the o-nitrophenyl ester 11b except that the solution
was centrifuged in an Eppendorf centrifuge prior to
making absorbance measurements at 400 nm.
Acknowledgements
27. Laurent, A.; Debart, F.; Lamb, N.; Rayner, B. Bioconju-
gate Chem. 1997, 8, 856.
This work was supported in part by NIH grant
CA40463 and a Wheeler Fellowship for Z. Ma. The
assistance of the Washington University High Resolu-
tion NMR Facility, funded in part through NIH Bio-
medical Research Support Shared Instrument Grants
RR-02004, RR-05018, and RR-07155 is gratefully
acknowledged, as is the Washington University Mass
Spectrometry Resource, an NIH Research Resource
(Grant No. P41RR0954).
28. SantaLucia, J., John.; Allawi, H. T.; Seneviratne, P. A.,
Biochemistry 1996, 35, 3555.
29. Arar, K.; Monsigny, M.; Mayer, R. Tetrahedron Lett.
1993, 34, 8087.
30. Frazier, K. A. US Patent 4,980,482, 1990.
31. Fersht, A. Enzyme Structure and Mechanism; W. H. Free-
man: NewYork, 1985.
32. Bloomfield, V. A.; Crothers, D. M.; Inioco, I. Nucleic
Acids: Structures, Properties, and Functions; University
Science Books: Sausalito, CA, 1999.
33. Gelfand, C. A.; Plum, G. E.; Mielewczyk, S.; Remeta,
D. P.; Breslauer, K. J. Proc. Natl. Acad. Sci. U.S.A. 1999, 96,
6113.
34. Peyret, N.; Seneviratne, P. A.; Allawi, H. T.; SantaLucia,
J., Jr. Biochemistry 1999, 38, 3468.
References and Notes
1. Albert, A. Selective Toxicity. The Physico-chemical Basis of
Therapy, 6th ed.; Chapman and Hall: London, 1979.
2. Drews, J. Science 2000, 287, 1960.
35. Stoops, J. K.; Horgan, D. J.; Runnegar, M. T. C.; De
Jersey, J.; Webb, E. C.; Zerner, B. Biochemistry 1969, 8,
2026.
3. Gibbs, J. B. Science 2000, 287, 1969.
4. Denny, W. A. Curr. Pharm. Des 1996, 2, 281.
5. Sinhababu, A. K.; Thakker, D. R. Adv. Drug Deliv. Rev.
1996, 19, 241.
6. Melton, R.; Connors, T.; Knox, R. J. S.T.P. Pharma Sci.
1999, 9, 13.
7. Chari, R. V. J. Adv. Drug Deliv. Rev. 1998, 31, 89.
8. Sherwood, R. F. Adv. Drug Deliv. Rev. 1996, 22, 269.
9. Springer, C. J.; Niculescu-Duvaz, I. Adv. Drug Deliv. Rev.
1996, 22, 351.
10. Connors, T. A.; Knox, R. J. Stem Cells (Dayton) 1995,
13, 501.
36. Chakravarty, P. K.; Carl, P. L.; Weber, M. J.; Katze-
nellenbogen, J. A. J. Med. Chem. 1983, 26, 633.
37. Campbell, D. A.; Gong, B.; Kochersperger, L. M.; Yon-
kovich, S.; Gallop, M. A.; Schultz, P. G. J. Am. Chem. Soc.
1994, 116, 2165.
38. Miyazawa, T. Amino Acids 1999, 16, 191.
39. Milstien, J. B.; Fife, T. H. J. Amer. Chem. Soc. 1968, 90,
2164.
40. Fink, D. W.; Koehler, W. R. Anal. Chem. 1970, 42, 990.
41. Pollack, S. J.; Schultz, P. G. J. Am. Chem. Soc. 1989, 111,
1929.
42. Lombardo, A. J. Chem. Educ. 1982, 59, 887.