Organometallics
Communication
ASSOCIATED CONTENT
* Supporting Information
■
S
Text, tables, and figures giving experimental procedures,
computational data, and additional spectral data and CIF files
giving crystallographic details and data for 2 and 3. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
C.M.T. is grateful for a 2011 Sloan Research Fellowship. We
also thank Brandeis University for funding this project.
■
Figure 2. Computed Co−P natural bond orbitals (NBOs) of 2 and 3.
2: 46.3% Co, 53.74% P (85.5% p, 14.2% s). 3: 41.0% Co, 59.0% P
(64.1% p, 35.4% s).
REFERENCES
■
phosphido ligand, since a dative donor−acceptor interaction
from Co to P would be expected to have significantly more
contribution from Co. Interestingly, the Co−PNHP NBO in 5 is
calculated to be made up of 53.2% Co and 46.8% P character
and, thus, more in line with a donor/acceptor bonding
description. The natural charge on Co in 2 is computed to
be −1.52, only slightly more negative than that of the Co center
in 4 (−1.31).
(1) Crudden, C. M.; Allen, D. P. Coord. Chem. Rev. 2004, 248,
2247−2273.
(2) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev.
1999, 100, 39−92.
(3) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440−1449.
(4) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534−541.
(5) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290−1309.
(6) Cowley, A. H.; Kemp, R. A. Chem. Rev. 1985, 85, 367−382.
(7) Gudat, D. Coord. Chem. Rev. 1997, 163, 71−106.
(8) Nakazawa, H. Transition Metal Complexes Bearing a
Phosphenium Ligand. In Adv. Organomet. Chem., Academic Press:
New York, 2004; Vol. 50, pp 107−143.
An additional convincing piece of evidence for NHP−
phosphido character comes from the calculated Co−CO
vibrational frequencies for 2 compared to those in 4 and 5.
While the computed values do not match experimental values,
comparisons between other computed values remain valid. The
infrared CO stretches calculated for 2 are 1928 and 1885 cm−1,
while those predicted for phosphido complex 4 are 1925 and
1856 cm−1, suggesting a similar Co oxidation state (CoI) in
these two complexes. On the other hand, the CO stretching
frequencies predicted for 5 are 1894 and 1812 cm−1, indicative
of a more electron-rich Co center involved in a donor/acceptor
interaction with the NHP without fully undergoing two-
electron oxidation. Thus, our findings from DFT and NBO
studies suggest that the bonding in 2 is best described as an
NHP− phosphide ligand bound to a formally CoI center. The
NHP− phosphido bonding description renders these PPP
ligands analogous to a family of bis(phosphine)phosphido
ligands reported in recent years.33−36 The difference between
the bonding of the chelating NHP-diphosphine ligand and the
monodentate NHPMe in model complex 5 is intriguing and may
be related to the enforced planarity of the N-aryl substituents,
delocalizing the nitrogen lone pairs responsible for stabilizing
the singlet state of the phosphenium.
(9) Bansal, R. K.; Gudat, D., Recent Developments in the Chemistry
of N-Heterocyclic Phosphines. In Phosphorus Heterocycles II, Springer:
Berlin/Heidelberg, 2010; Vol. 21, pp 63−102.
(10) Gudat, D. Acc. Chem. Res. 2010, 43, 1307−1316.
(11) Fleming, S.; Lupton, M. K.; Jekot, K. Inorg. Chem. 1972, 11,
2534−2540.
(12) Maryanoff, B. E.; Hutchins, R. O. J. Org. Chem. 1972, 37, 3475−
3480.
(13) Caputo, C. A.; Price, J. T.; Jennings, M. C.; McDonald, R.;
Jones, N. D. Dalton Trans. 2008, 3461−3469.
(14) Dube, J. W.; Farrar, G. J.; Norton, E. L.; Szekely, K. L. S.;
Cooper, B. F. T.; Macdonald, C. L. B. Organometallics 2009, 28,
4377−4384.
(15) Reeske, G.; Cowley, A. H. Inorg. Chem. 2006, 46, 1426−1430.
(16) Abrams, M. B.; Scott, B. L.; Baker, R. T. Organometallics 2000,
19, 4944−4956.
(17) Caputo, C. A.; Jennings, M. C.; Tuononen, H. M.; Jones, N. D.
Organometallics 2009, 28, 990−1000.
(18) Caputo, C. A.; Brazeau, A. L.; Hynes, Z.; Price, J. T.; Tuononen,
H. M.; Jones, N. D. Organometallics 2009, 28, 5261−5265.
(19) Hardman, N. J.; Abrams, M. B.; Pribisko, M. A.; Gilbert, T. M.;
Martin, R. L.; Kubas, G. J.; Baker, R. T. Angew. Chem., Int. Ed. 2004,
43, 1955−1958.
In summary, sodium−halogen exchange has proven to be a
useful synthetic route to a cobalt complex coordinated by our
previously reported NHP-diphosphine chelating ligands. Upon
NHP coordination, however, the NHP unit adopts an unusual
pyramidal geometry indicative of a NHP− phosphido
description and a two-electron-oxidized Co center. Consistent
with this description, oxidation with trimethylamine N-oxide
leads exclusively to oxidation of the central NHP phosphorus to
generate an unprecedented metal-bound N-heterocyclic
phosphinito species. Future investigations will focus on the
coordination chemistry of the NHP-diphosphine ligand and its
oxidized derivative with additional transition metal fragments in
an effort to evaluate the factors that govern planar vs pyramidal
coordination modes in these sterically and electronically
modifiable nitrosyl analogues.
(20) Mata, J. A.; Poyatos, M.; Peris, E. Coord. Chem. Rev. 2007, 251,
841−859.
(21) Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239−
2246.
(22) Day, G. S.; Pan, B.; Kellenberger, D. L.; Foxman, B. M.;
Thomas, C. M. Chem. Commun. 2011, 47, 3634−3636.
(23) Hutchins, L. D.; Duesler, E. N.; Paine, R. T. Organometallics
1982, 1, 1254−1256.
(24) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor,
G. C. J. Chem. Soc., Dalton Trans. 1984, 1349−1356.
(25) Hutchins, L. D.; Light, R. W.; Paine, R. T. Inorg. Chem. 1982,
21, 266−272.
(26) Burck, S.; Daniels, J.; Gans-Eichler, T.; Gudat, D.; Nattinen, K.;
Nieger, M. Z. Anorg. Allg. Chem. 2005, 631, 1403−1412.
(27) Le Floch, P.; Mathey, F. Synlett 1990, 171−172.
̈
5562
dx.doi.org/10.1021/om200816p|Organometallics 2011, 30, 5560−5563