required concentration. DMSO at comparable concentrations did
not show any effects on cell cytotoxicity.
3 W. F. Kean and I. R. L. Kean, Inflammopharmacology, 2008, 16,
112.
4 E. R. T. Tieknik, Inflammopharmacology, 2008, 16, 138.
5 I. Kostova, Anti-Cancer Agents Med. Chem., 2006, 6, 19.
6 E. R. T. Tiekink, Crit. Rev. Oncol. Hematol., 2002, 42, 225.
7 L. Messori and G. Marcon, Metal Ions in Biological Systems. Gold
Complexes as antitumour agents, A Sigel and H Sigel (Eds), Marcel
Dekker Inc, New York, 2004.
8 A. Casini, C. Hartinger, C. Gabbiani, E. Mini, P. J. Dyson, B. K.
Keppler and L. Messori, J. Inorg. Biochem., 2008, 102, 564.
9 S. Nobili, E. Mini, I. Landini, C. Gabbiani, A. Casini and L. Messori,
Med. Res. Rew., 2010, 30, 550.
10 L. Ronconi and D. Fregona, Dalton Trans., 2009, 10670.
11 R. W. Y. Sun and C. M. Che, Coord. Chem. Rev., 2009, 253,
1682.
12 A. Bindoli, M. P. Rigobello, G. Scutari, C. Cabbiani, A. Casini and L.
Mesori, Coord. Chem. Rev., 2009, 253, 1692.
13 I. Ott, Coord. Chem. Rev., 2009, 253, 1670.
For cytotoxicity screening, cells were grown in 96-well cell
culture plates (Corning, NY) at a density of 25 ¥ 103 cells
per well. The culture medium was replaced with fresh medium
containing the complexes at concentrations varying from 0 to
20 mM, with an exposure time of 72 h. Thereafter, the medium was
replaced by fresh medium and cell survival was measured using
the MTT test as previously described. Briefly, 3-(4,5-dimethyl-
2-thiazoyl)-2,5-diphenyltetrazolium bromide (MTT, Merck) was
added at 250 mg mL-1 and incubation was continued for 2 h.
Then the cell culture supernatants were removed, the cell layer
was dissolved in DMSO, and absorbance at 540 nm was measured
in a 96-well multiwell-plate reader (iEMS Reader MF, Labsystems,
Bioconcept, Switzerland) and compared to the values of control
cells incubated in the absence of complexes. Experiments were
conducted in quadruplicate wells and repeated at least twice.
14 A. Casini, C. Hartinger, C. Gabbiani, E. Mini, P. J. Dyson, B. K.
Keppler and L. Messori, J. Inorg. Biochem., 2008, 102, 564.
15 K. M. Hindi, M. J. Panzner, C. A. Tessier, C. L. Cannon and W. J.
Youngs, Chem. Rev., 2009, 109, 3859.
16 M. J. McKeage, L. Maharaj and S. J. Berners-Price, Coord. Chem. Rev.,
2002, 232, 127.
Cell uptake studies and ICP-MS analysis
17 P. J. Barnard and S. J. Berners-Price, Coord. Chem. Rev., 2007, 251,
For evaluation of the cell uptake, cells were seeded in 6-well plates
and grown to approximately 70% confluency and incubated with
the corresponding metallodrug at 1 mM for 3 h. At the end of
the incubation period, cells were rinsed cells with 5 mL of PBS,
detached by adding 0.4 mL enzyme free cell dissociation solution
(Millipore, Switzerland) and collected by centrifugation. Cell lysis
was achieved using a freeze-thaw technique that was recently found
to be suitable for cell uptake studies.51 All samples were analyzed
for their protein content (to establish the number of cells per
sample) prior to ICP-MS determination using a BCA assay (Sigma
Aldrich, Switzerland). All samples were digested in ICP-MS grade
concentrated hydrochloric acid (Sigma Aldrich, Switzerland) for
3 h at room temperature and filled to a total volume of 8 ml with
ultrapure water. Indium was added as an internal standard at a
concentration of 0.5 ppb. Determinations of total metal contents
were achieved on an Elan DRC II ICP-MS instrument (Perkin
Elmer, Switzerland) equipped with a Meinhard nebulizer and
a cyclonic spray chamber. The ICP-MS instrument was tuned
daily using a solution provided by the manufacturer containing 1
ppb each of Mg, In, Ce, Ba, Pb and U. External standards were
prepared gravimetrically in an identical matrix to the samples (with
regard to internal standard and hydrochloric acid) with single
element standards obtained from CPI International (Amsterdam,
The Netherlands).
1889.
18 K. P. Bhabak, B. J. Bhuyan and G. Mugesh, Dalton Trans., 2011,
2099.
19 X. Zhang, M. Frezza, V. Milacic, L. Ronconi, Y. H. Fan, C. F. Bi, D.
Fregona and Q. P. Dou, J. Cell. Biochem., 2010, 109, 162.
20 A. Casini, G. Kelter, C. Gabbiani, M. A. Cinellu, G. Minghetti, D.
Fregona, H. H. Fiebig and L. Messori, JBIC, J. Biol. Inorg. Chem.,
2009, 14, 1139.
21 M. V. Baker, P. J. Barnard, S. J. Berners-Price, S. K. Brayshaw, J. L.
Hickey, B. W. Skelton and A. H. White, Dalton Trans., 2006, 3708.
22 F. Mendes, M. Groessl, A. A. Nazarov, Y. O. Tsybin, G. Sava, I. Santos,
P. J. Dyson and A. Casini, J. Med. Chem., 2011, 54, 2196.
23 F. Magherini, A. Modesti, L. Bini, M. Puglia, I. Landini, S. Nobili, E.
Mini, M. A. Cinellu, C. Gabbiani and L. Messori, JBIC, J. Biol. Inorg.
Chem., 2010, 15, 573.
24 S. Miranda, E. Vergara, F. Mohr, D. de Vos, E. Cerrada, A. Mendia
and M. Laguna, Inorg. Chem., 2008, 47, 5641.
25 E. Vergara, A. Casini, F. Sorrentino, O. Zava, E. Cerrada, M. P.
Rigobello, A. Bindoli, M. Laguna and P. J. Dyson, ChemMedChem,
2010, 5, 96.
26 E. Vergara, S. Miranda, F. Mohr, E. Cerrada, E. R. T. Tiekink, P.
Romero, A. Mendia and M. Laguna, Eur. J. Inorg. Chem., 2007, 2926.
27 C. G. Hartinger, A. A. Nazarov, S. M. Ashraf, P. J. Dyson and B. K.
Keppler, Curr. Med. Chem., 2008, 15, 2574.
28 M. M. Welling and R. Alberto, Nucl. Med. Commun., 2010, 31, 239.
29 L. A. Jones, S. Sanz and M. Laguna, Catal. Today, 2007, 122, 403.
30 S. Sanz, L. A. Jones, F. Mohr and M. Laguna, Organometallics, 2007,
26, 952.
31 S. Sanz, PhD thesis, Zaragoza, 2007.
32 B. T. Elie, C. Levine, I. Ubarretxena-Belandia, A. Varela-Ramirez, R.
J. Aguilera, R. Ovalle and M. Contel, Eur. J. Inorg. Chem., 2009, 3421.
33 D. J. Darensbourg, C. G. Ortiz and J. W. Kamplain, Organometallics,
2004, 23, 1747.
Acknowledgements
34 Z. Assefa, B. G. McBurnett, R. J. Staples and J. P. j. Fackler, Inorg.
Chem., 1995, 34, 4965.
35 Z. Assefa, R. J. Staples and J. P. j. Fackler, Acta Crystallogr., Sect. C:
Cryst. Struct. Commun., 1996, 52, 305.
36 F. Mohr, S. Sanz, E. R. T. Tieknik and M. Laguna, Organometallics,
2006, 25, 3084.
37 F. Mohr, E. Cerrada and M. Laguna, Organometallics, 2006, 25, 644.
38 J. M. Forward, D. Bohmann, J. P. j. Fackler and R. J. Staples, Inorg.
Chem., 1995, 34, 6330.
39 P. Smolenski and A. J. L. Pombeiro, Dalton Trans., 2008, 87.
40 C. A. Mebi and B. J. Frost, Organometallics, 2005, 24, 2339.
41 J. M. Forward, D. Bohmann, J. P. Fackler and R. J. Staples, Inorg.
Chem., 1995, 34, 6330.
We thank the Ministerio de Ciencia e Innovacio´n (CTQ2008-
06716-CO3-01) for financial support. The authors wish also to
thank COST D39 action for stimulating discussion. AC thanks
the Swiss National Science Foundation (AMBIZIONE project
no. PZ00P2-121933) and the Swiss Confederation (Action COST
D39 - Accord de recherche - SER project no. C09.0027) for
financial support.
References
42 E. R. T. Tiekink and J.-G. Kang, Coord. Chem. Rev., 2009, 253, 1627.
43 D. J. Daigle, Inorg. Synth., 1998, 32, 40.
44 F. Joo´, J. Kova´cs, A. Katho´, A. C. Be´nyei, T. Decuir and D. J.
Darensbourg, Inorg. Synth., 1998, 32, 1.
1 C. F. Shaw, Chem. Rev., 1999, 99, 2589.
2 D. A. Gordon, Textbook of rheumatology, 4th edn, W. N. Kelly, E. D.
Harris, S. Ruddy and S. B. Sledge, editors, Philadelphia, W. B. Saunders
Company, 1989.
10934 | Dalton Trans., 2011, 40, 10927–10935
This journal is
The Royal Society of Chemistry 2011
©