P. Wessig, C. Pick / Journal of Photochemistry and Photobiology A: Chemistry 222 (2011) 263–265
265
B3LYP, which should be important for an accurate calculation of the
rotational barrier of biaryls [13].
[2] (a) I. Cepanec, Synthesis of Biaryls, Elsevier, Amsterdam, 2004;
(b) G. Bringmann, A.J. Price Mortimer, P.A. Keller, M.J. Gresser, J. Garner, M.
Breuning, Angew. Chem. Int. Ed. 44 (2005) 5384–5427.
[3] Due to lack of space, only the asymmetric reactions are cited. With respect to
achiral variants, we refer to the references cited therein:
(a) A. Gutnov, B. Heller, C. Fischer, H.-J. Drexler, A. Spannenberg, B. Sundermann,
C. Sundermann, Angew. Chem. Int. Ed. 43 (2004) 3795–3797;
(b) T. Shibata, T. Fujimoto, K. Yokota, K. Takagi, J. Am. Chem. Soc. 126 (2004)
8382–8383;
mine the rotational barriers experimentally, if possible. Depending
on the height of the rotational barrier, two different meth-
of choice, whereas barriers between 20 and 30 kcal/mol are
accessible by dynamic HPL chromatography (DHPLC) [8,15]. The
experimentally determined rotational barriers are summarized
(c) Y. Nishii, K. Wakasugi, K. Koga, Y. Tanabe, J. Am. Chem. Soc. 126 (2004)
5358–5359;
(d) J. Bao, W.D. Wulff, M.J. Fumo, E.B. Grant, D.P. Heller, M.C. Whitcomb, S.-M.
Yeung, J. Am. Chem. Soc. 118 (1996) 2166–2181;
(e) A.V. Vorogushin, W.D. Wulff, H.-J. Hansen, J. Am. Chem. Soc. 124 (2002)
6512–6513;
in Table
values.
1 and are in good agreement with the calculated
(f) J.C. Anderson, J.W. Cran, N.P. King, Tetrahedron Lett. 44 (2003) 7771–7774.
[4] P. Wessig, G. Müller, Chem. Rev. 108 (2008) 2051–2063.
[5] Preparation of compounds 2a–c were already reported but with lower yields;
(a) F.Y. Kwong, H.W. Lee, W.H. Lam, L. Qiu, A.S.C. Chan, Tetrahedron: Asymmetry
17 (2006) 1238–1252 (2a);
4. Conclusion
In summary, we reported on the synthesis of eight heterocyclic
biaryls 4–9, 17, 18 with the Photo-Dehydro-Diels-Alder (PDDA) reac-
tion as a key step. Half of these compounds are axially chiral and
we calculated the rotational barriers by means of DFT methods.
Furthermore, we succeeded in the experimental determination of
these barriers with DNMR (7 and 17) and DHPLC (18), respec-
tively. The values calculated with the M06-2X/TZVP method are in
excellent accordance with experimental values and we therefore
emphatically recommend this method for such problems.
(b) M. Feuerstein, H. Doucet, M. Santelli, Tetrahedron Lett 46 (2005) 1717–1720
(2b);
(c) N. Inoue, O. Sugimoto, K. Tanji, Heterocycles 72 (2007) 665–671 (2b,c);
(d) N.A. Bumagin, A.B. Ponomarev, I.P. Beletskaya, Bull. Acad. Sci. USSR 33 (1984)
1433–1438 (2c).
[6] (a) P. Wessig, G. Müller, A. Kühn, R. Herre, H. Blumenthal, S. Troelenberg, Syn-
thesis (2005) 1445–1454;
(b) P. Wessig, G. Müller, Chem. Commun. (2006) 4524–4526;
(c) P. Wessig, G. Müller, R. Herre, A. Kühn, Helv. Chim. Acta 89 (2006)
2694–2791;
(d) P. Wessig, G. Müller, C. Pick, A. Matthes, Synthesis (2007) 464–477;
(e) P. Wessig, G. Müller, Aust. J. Chem. 61 (2008) 569–572.
[7] M. Yamaji, J. Kobayashi, S. Tobita, Photochem. Photobiol. Sci. 4 (2005) 294–297.
[8] See Electronic Supplementary Information (ESI).
[9] H.-Q. Do, O. Daugulis, Org. Lett. 12 (2010) 2517–2519.
[10] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
[11] (a) Y. Zhao, D.G. Truhlar, J. Phys. Chem. 110 (2006) 5121–5129;
(b) Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008) 215–241.
[12] (a) W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory,
Wiley-VCH, Weinheim, 2001;
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
(b) D. Sholl, J.A. Steckel, Density Functional Theory: A Practical Introduction,
John Wiley & Sons, New York, 2009.
[13] S. Grimme, Angew. Chem. Int. Ed. 45 (2006) 4460–4464.
[14] J. Sandström, Dynamic NMR Spectroscopy, Academic Press, New York, 1982.
[15] O. Trapp, Chirality 18 (2006) 489–497.
[1] G.W. Parshall, S.D. Ittel, Homogeneous Catalysis: The Applications and Chem-
istry of Catalysis by Soluble Transition Metal Complexes, John Wiley & Sons,
New York, 1992.