10.1002/anie.201703461
Angewandte Chemie International Edition
COMMUNICATION
Keywords: benzene hydroxylation
molecule N-acyl amino acids
• cytochrome P450 • decoy
group of Z-L-Pro-L-Phe and the heme iron was 8.4 Å (Fig. 4).
•
Docking simulations of benzene calculated using AutoDock Vina
(Fig. S3) revealed that there is adequate space for benzene
binding at the distal side of the heme prosthetic group, even after
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
binding of Z-
hydroxylation of benzene by P450BM3 in the presence of Z-
-Phe, while Z- -Pro- -Phe remains unhydroxylated (Fig. S4).
It is noteworthy that the proline side chain of Z- -Pro- -Phe
occupied the space around Pro25 (Fig. 4). We presume that the
bulkiness of proline at the center of Z- -Pro- -Phe may play a
crucial role in fixing Z- -Pro- -Phe at the entrance of the fatty acid
binding channel to create adequate space at the distal side of the
heme for benzene binding. In fact, Z-Gly- -Phe and Ph-C6- -Phe
did not efficiently activate P450BM3 for benzene hydroxylation,
while S-Ibu- -Phe, which possesses a bulky phenyl group at the
center of its structure, promoted a catalytic activity that was many
times higher. Simulated structures of S-Ibu- -Phe bound to
L-Pro-L-Phe. These observations are consistent with
L-Pro-
L
L
L
L
L
[1]
[2]
[3]
a) D. Holtmann, M. W. Fraaije, I. W. C. E. Arends, D. J. Opperman, F.
Hollmann, Chem. Commun. 2014, 50, 13180-13200; b) F. Nastri, M.
Chino, O. Maglio, A. Bhagi-Damodaran, Y. Lu, A. Lombardi, Chem. Soc.
Rev. 2016, 45, 5020-5054.
a) P. R. Ortiz de Montellano, Chem. Rev. 2010, 110, 932-948; b) I. G.
Denisov, T. M. Makris, S. G. Sligar, I. Schlichting, Chem. Rev. 2005, 105,
2253-2277; c) B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004,
104, 3947-3980.
a) C. J. C. Whitehouse, S. G. Bell, L. L. Wong, Chem. Soc. Rev. 2012,
41, 1218-1260; b) S. Kille, F. E. Zilly, J. P. Acevedo, M. T. Reetz, Nat.
Chem. 2011, 3, 738-743; c) R. Singh, J. N. Kolev, P. A. Sutera, R. Fasan,
ACS Catal. 2015, 5, 1685-1691; d) K. D. Zhang, B. M. Shafer, M. D.
Demars, H. A. Stern, R. Fasan, J. Am. Chem. Soc. 2012, 134, 18695-
18704; e) R. Fasan, ACS Catal. 2012, 2, 647-666; f) P. S. Coelho, E. M.
Brustad, A. Kannan, F. H. Arnold, Science 2013, 339, 307-310; g) M.
Erkelenz, C. H. Kuo, C. M. Niemeyer, J. Am. Chem. Soc. 2011, 133,
16111-16118; h) O. Shoji, T. Fujishiro, K. Nishio, Y. Kano, H. Kimoto, S.-
C. Chien, H. Onoda, A. Muramatsu, S. Tanaka, A. Hori, H. Sugimoto, Y.
Shiro, Y. Watanabe, Catal. Sci. Technol. 2016, 6, 5806-5811; i) H. Onoda,
O. Shoji, Y. Watanabe, Dalton Trans. 2015, 44, 15316-15323; j) C. F.
Butler, C. Peet, A. E. Mason, M. W. Voice, D. Leys, A. W. Munro, J. Biol.
Chem. 2013, 288, 25387-25399; k) P. Le-Huu, T. Heidt, B. Claasen, S.
Laschat, V. B. Urlacher, ACS Catal. 2015, 5, 1772-1780.
L
L
L
L
L
L
L
L
P450BM3 showed that the phenyl group including the methyl
group next to the carbonyl moiety of ibuprofen may be located in
proximity to Pro25 (Fig. S5a), similarly to the proline side chain of
Z-
and Ph-C6-
be key for an efficient decoy molecule. Accordingly, we prepared
N-heptyl- -proline modified with -phenylalanine (C7- -Pro- -Phe,
Fig. 2) to further enhance catalytic activity. As expected, the
turnover rate of C7- -Pro-
-Phe reached 259 min–1P450–1 with a
L-Pro-L-Phe. Judging from the comparison between C10-
L-Phe
L-Phe, the terminal alkyl chain of C10- -Phe may also
L
L
L
L
L
L
L
[4]
[5]
[6]
a) S. S. Boddupalli, B. C. Pramanik, C. A. Slaughter, R. W. Estabrook, J.
A. Peterson, Arch. Biochem. Biophys. 1992, 292, 20-28; b) L. O. Narhi,
A. J. Fulco, J. Biol. Chem. 1986, 261, 7160-7169.
coupling efficiency of 43%. To our knowledge, this represents the
highest turnover frequency (TOF) for benzene hydroxylation to
phenol of any biocatalyst reported.[12] Docking simulations further
supported the assumption that P450BM3 can accommodate C7-
a) N. Kawakami, O. Shoji, Y. Watanabe, Angew. Chem. Int. Ed. 2011,
50, 5315-5318; b) F. E. Zilly, J. P. Acevedo, W. Augustyniak, A. Deege,
U. W. Hausig, M. T. Reetz, Angew. Chem. Int. Ed. 2011, 50, 2720-2724.
a) N. Kawakami, O. Shoji, Y. Watanabe, Chem. Sci. 2013, 4, 2344-2348;
b) O. Shoji, T. Kunimatsu, N. Kawakami, Y. Watanabe, Angew. Chem.
Int. Ed. 2013, 52, 6606-6610; c) N. Kawakami, Z. Cong, O. Shoji, Y.
Watanabe, J. Porphyrins Phthalocyanines 2015, 19, 329-334; d) O. Shoji,
Y. Watanabe, Isr. J. Chem. 2015, 55, 32-39.
L
-Pro-
Finally, we estimated the TON for benzene hydroxylation using
C7- -Pro- -Phe as a decoy molecule. The TON for a 12-h reaction
L-Phe in a similar fashion to Z-L-Pro-L-Phe (Fig. S5b).
L
L
using 25 nM P450BM3 reached 40,200 ± 1,700 with a coupling
efficiency of 46%.
[7]
[8]
[9]
J. Rittle, M. T. Green, Science 2010, 330, 933-937.
In conclusion, we have demonstrated that N-acyl amino acids
as well as amino acid dipeptides strongly activate P450BM3 for
benzene hydroxylation to generate phenol without formation of
side products due to overoxidation of phenol, even though we did
not perform any mutagenesis of P450BM3. We believe that the
direct hydroxylation of benzene to phenol by P450BM3 assisted
by the simple addition of amino acid derivatives as presented here
could be an attractive alternative for phenol production. Despite
having examined only a limited number of carboxylic acids and
amino acids for the preparation of decoy molecules, further
screening is expected to enhance the catalytic activity of
P450BM3. We believe that the catalytic turnover rate and coupling
efficiency for benzene hydroxylation can be improved further by
optimizing the decoy molecule structure based upon the crystal
R. E. Banks, J. C. Tatlow, J. Fluorine Chem. 1986, 33, 227-346.
Z. Cong, O. Shoji, C. Kasai, N. Kawakami, H. Sugimoto, Y. Shiro, Y.
Watanabe, ACS Catal. 2015, 5, 150-156.
[10] a) C. J. C. Whitehouse, S. G. Bell, H. G. Tufton, R. J. P. Kenny, L. C. I.
Ogilvie, L.-L. Wong, Chem. Commun. 2008, 966-968; b) V. E. Ferrero,
G. Di Nardo, G. Catucci, S. J. Sadeghi, G. Gilardi, Dalton Trans. 2012,
41, 2018-2025.
[11] A. Dennig, N. Lulsdorf, H. F. Liu, U. Schwaneberg, Angew. Chem. Int.
Ed. 2013, 52, 8459-8462.
[12] a) R. S. Wang, T. Nakajima, H. Tsuruta, T. Honma, Chem. Biol. Interact.
1996, 99, 239-252; b) D. R. Koop, C. L. Laethem, G. G. Schnier, Toxicol.
Appl. Pharmacol. 1989, 98, 278-288; c) E. T. Farinas, M. Alcalde, F.
Arnold, Tetrahedron 2004, 60, 525-528.
[13] S. D. Munday, O. Shoji, Y. Watanabe, L.-L. Wong, S. G. Bell, Chem.
Commun. 2016, 52, 1036-1039.
structure of P450BM3 with Z-L-Pro-L-Phe, and in combination with
mutagenesis to further tailor the active site for this reaction.[13]
Acknowledgements
This work was supported by Grants-in-Aid for Scientific Research
(S) to Y. W. (24225004) from the Ministry of Education, Culture,
Sports, Science, and Technology (Japan) and JST CREST Grant
Number JPMJCR15P3, Japan. This work was also supported by
JSPS KAKENHI Grant Number JP15H05806 in Precisely
Designed Catalysts with Customized Scaffolding to O. S.
This article is protected by copyright. All rights reserved.