Journal of the American Chemical Society
COMMUNICATION
high-spin Fe(III)Fe(IV)-oxo complex (h). While not as intrinsi-
cally reactive as the (P+)Fe(IV)dO intermediate (compound I)
in cytochrome P450,27 the high rate for DHA oxidation by 4 is
nonetheless extraordinary in the context of known oxidizing
capabilities of copperꢀoxygen species.5,7,28 While further work is
necessary to understand the basis for this reactivity, we speculate
that the high basicity of the hydroxide group is a key factor in view
of the fact that the potential for the 3ꢀ/4 couple is modest
(ꢀ0.076 V vs Fc+/Fc).29 Similar arguments have been advanced
to rationalize observed rates of H-atom transfer by Mn-oxo.30,31
and Fe(IV)-imido32 complexes, as well as cuprous oxide sur-
faces.33 The relatively minor structural differences (overall geo-
metry, metalꢀligand bond distances) between 4 and 5 may also
result in a small reorganization energy that could contribute to a
high reaction rate.34
In summary, we have prepared a new type of copperꢀoxygen
intermediate and shown through theory and experiment that it is
best described as a singlet Cu(III)ꢀOH complex. High rates of
H-atom abstraction from phenols and DHA by this complex
were observed, indicating that such a species should be consid-
ered as a viable intermediate in catalytic oxidation reactions.
(7) Himes, R. A.; Karlin, K. D. Curr. Opin. Chem. Biol. 2009, 13,
119–131. Hong, S.; Gupta, A. K.; Tolman, W. B. Inorg. Chem. 2009, 48,
6323–6325 and references cited therein.
(8) Chen, P.; Solomon, E. I. J. Am. Chem . Soc. 2004, 126, 4991–
5000. Evans, J. P.; Ahn, K.; Klinman, J. P. J. Biol. Chem. 2003, 278,
49691–49698. Yoshizawa, K.; Kihara, N.; Kamachi, T.; Shiota, Y. Inorg.
Chem. 2006, 45, 3034–3041. Crespo, A.; Marti, M. A.; Roitberg, A. E.;
Amzel, L. M.; Estrin, D. A. J. Am. Chem. Soc. 2006, 128, 12817–12828.
(9) Schr€oder, D.; Holthausen, M. C.; Schwarz, H. J. Phys. Chem. B
2004, 108, 14407–14416. Dietl, N.; van der Linde, C.; Schlangen, M.;
Beyer, M. K.; Schwarz, H. Angew. Chem., Int. Ed. 2011, 50, 4966–4969.
(10) Yoshihide, N.; Kimihiko, H.; Tetsuya, T. J. Chem. Phys. 2001,
114, 7935–7940. Decker, A.; Solomon, E. I. Curr. Opin. Chem. Biol. 2005,
9, 152–163. Gherman, B. F.; Heppner, D. E.; Tolman, W. B.; Cramer,
C. J. J. Biol. Inorg. Chem. 2006, 11, 197–205. Huber, S. M.; Ertem, M. Z.;
Aquilante, F.; Gagliardi, L.; Tolman, W. B.; Cramer, C. J. Chem.—Eur. J.
2009, 15, 4886–4895. Gherman, B. F.; Tolman, W. B.; Cramer, C. J.
J. Comput. Chem. 2006, 27, 1950–1961.
(11) Protonation of a species with core F to yield a compound with
core G has been postulated: Reinaud, O.; Capdevielle, P.; Maumy, M.
J. Chem. Soc., Chem. Commun. 1990, 566–568.
(12) See the Supporting Information.
(13) Some reported CuꢀOH bond distances in terminal moncopperꢀ
hydroxide complexes: (1.878(2) Å) Berreau, L. M.; Mahapatra, S.;
Halfen, J. A.; Young, V. G., Jr.; Tolman, W. B. Inorg. Chem. 1996, 35,
6339–6342.(1.875(2) Å) Lee, S. C.; Holm, R. H. J. Am. Chem. Soc. 1993,
115, 11789–1198.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, including
b
(14) Parkin, G. Chem. Rev. 1993, 93, 887–911.
characterization data, spectra, X-ray structure drawings, kinetic
plots and tables, and calculation protocols and results (PDF) and
CIFs. This material is available free of charge via the Internet at
(15) Cramer, C. J. Essentials of Computational Chemistry: Theories
and Models, 2nd ed.; Wiley & Sons: New York, 2004; p 291.
(16) Large DebyeꢀWaller factors for this fit are consistent with a
spread of CuꢀN/O distances, consistent with the X-ray data and DFT
calculations.
(17) XAS samples were prepared using (p-tolyl)3N+PF6
.
ꢀ
’ AUTHOR INFORMATION
(18) DuBois, J. L.; Mukherjee, P.; Stack, T. D. P.; Hedman, B.;
Solomon, E. I.; Hodgson, K. O. J. Am. Chem. Soc. 2000, 122, 5775–5787.
(19) Shi, S.; Wang, Y.; Xu, A.; Wang, H.; Zhu, D.; Roy, S. B.; Jackson,
T. A.; Busch, D. H.; Yin, G. Angew. Chem., Int. Ed. 2011, 50, 7321–7324
and references cited therein.
(20) Lockwood, M. A.; Blubaugh, T. J.; Collier, A. M.; Lovell, S.;
Mayer, J. M. Angew. Chem., Int. Ed. 1999, 38, 225–227.
(21) Roth, J. P.; Mayer, J. M. Inorg. Chem. 1999, 38, 2760–2761.
(22) Goldsmith, C. R.; Stack, T. D. P. Inorg. Chem. 2006, 45, 6048–6055.
(23) Parsell, T.; Yang, M.; Borovik, A. J. Am. Chem. Soc. 2009, 131,
2762–2763.
(24) Gardner, K. A.; Kuehnert, L. L.; Mayer, J. M. Inorg. Chem. 1997,
36, 2069–2078.
(25) Goldsmith, C. R.; Cole, A. P.; Stack, T. D. P. J. Am. Chem. Soc.
2005, 127, 9904–9912.
(26) Xue, G.; De Hont, R.; M€unck, E.; Que, L., Jr. Nat. Chem. 2010,
Corresponding Author
’ ACKNOWLEDGMENT
This research was supported by the NIH (Grants R37-
GM47365 to W.B.T.; DK-31450 to E.I.S.) and the NSF
(CHE-0952054 to C.J.C.). SSRL operations are funded by the
Department of Energy, Office of Basic Energy Sciences. The
SSRL Structural Molecular Biology program is supported by the
National Institutes of Health, National Center for Research
Resources, Biomedical Technology Program, and the Department
of Energy, Office of Biological and Environmental Research. This
publication was made possible by Award P41 RR001209 from the
National Center for Research Resources (NCRR), a component
of the National Institutes of Health (NIH).
2, 400–405.
(27) Rittle, J.; Green, M. T. Science 2010, 330, 933–937.
(28) Itoh, S. Curr. Opin. Chem. Biol. 2006, 10, 115–122.
(29) Green, M. T. Curr. Opin. Chem. Biol. 2009, 13, 84–88.
(30) Prokop, K. A.; de Visser, S. P.; Goldberg, D. P. Angew. Chem.,
Int. Ed. 2010, 49, 5091–5095.
(31) Borovik, A. S. Chem. Soc. Rev. 2011, 40, 1870–1874.
(32) Nieto, I.; Ding, F.; Bontchev, R. P.; Wang, H.; Smith, J. M. J. Am.
Chem. Soc. 2008, 130, 2716–2717.
’ REFERENCES
(1) Klinman, J. P. Chem. Rev. 1996, 96, 2541–2561. Solomon, E. I.;
Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563–2605.
(2) Díaz-Requejo, M. M.; Pꢀerez, P. J. Chem. Rev. 2008, 108, 3379–3394.
(3) Que, L., Jr.; Tolman, W. B. Nature 2008, 455, 333–340.
(4) Woertink, J. S.; Smeets, P. J.; Groothaert, M. H.; Vance, M. A.;
Sels, B. F.; Schoonheydt, R. A.; Solomon, E. I. Proc. Natl. Acad. Sci. U.S.A.
2009, 106, 18908–18913.
(33) Reitz, J. B.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 11467–
11478.
(34) Mayer, J. M. Acc. Chem. Res. 2011, 44, 36–46.
(5) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047–1076.
Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104,
1013–1045. Hatcher, L.; Karlin, K. D. J. Biol. Inorg. Chem. 2004, 9,
669–683. Itoh, S. Curr. Opin. Chem. Biol. 2006, 10, 115–122.
(6) For example, see: Itoh, S.; Fukuzumi, S. Acc. Chem. Res. 2007, 40,
592–600.
’ NOTE ADDED AFTER ASAP PUBLICATION
The values in Table 2 were corrected, to agree with the data
discussed in the text, on November 2, 2011.
17605
dx.doi.org/10.1021/ja207882h |J. Am. Chem. Soc. 2011, 133, 17602–17605