5748
J. S. Yadav, S. S. Mandal / Tetrahedron Letters 52 (2011) 5747–5749
Br
OH
In conclusion, a concise and efficient first total synthesis of pec-
TBS-OTf
O
OBn
OBn
tinolide A has been achieved. Notable features include: (i) highly
diastereo- and enantioselective hydroxy crotylation to control
the configuration of the stereogenic centres. (ii) Still–Gennari reac-
tion for the generation of cis-olefin.
Mg, CuI
THF, -30 0C
3 h, 85%
2,6-Lutidine
CH2Cl2, rt, 3 h
6
7
92%
20% Pd(OH)2/ C
H2, THF
(COCl)2, DMSO
Et3N, CH2Cl2
OTBS
OTBS
OH
OBn
Acknowledgments
rt, 3 h, 92%
rt, 4 h, 89%
9
8
S.S.M. thank CSIR, New Delhi for financial assistance in the form
of fellowship. The author (J.S.Y.) acknowledges the partial support
by King Saud University for Global Research Network for Organic
Synthesis (GRNOS).
NaH, THF
-78 oC, 1 h
O
OTBS
OTBS
H
OEt
A, 90%
O
11
10
A = EtO2CCH2P(O)(OCH2CF3)2
Supplementary data
Scheme 2.
Supplementary data associated with this article can be found, in
(COCl)2, DMSO
Et3N, CH2Cl2
OTBS
O
O
OTBS
DIBAl-H
References and notes
OH
OEt
CH2Cl2, -20 o
3 h, 95%
C
rt, 3 h, 90%
5
11
1. (a) Collett, L. A.; Davies-Coleman, M. T.; Rivett, D. E. A. Naturally Occurring 6-
Substituted 5,6-Dihydro-R-Pyrones In Progress in the Chemistry of Organic
Natural Products; Herz, W., Falk, H., Kirby, G. W., Moore, R. E., Tamm, Ch., Eds.;
Springer: New York, 1998; Vol. 75, pp 182–209; (b) Pereda-Miranda, R. Bioactive
Natural Products from Traditionally Used Mexican Plants. In Phytochemistry of
Medicinal Plants; Arnason, J. T., Mata, R., Romeo, J. T., Eds.; Plenum: New York,
1995; pp 83–112.
i)
OMOM
ii) sec-BuLi, B-Methoxy
OTBS
OTBS OH
diisopinocamphenyl borane
H
iii) BF3.Et2O , -78 o
iv) NaOH / H2O2 ,THF
3 h,
C
OMOM
12
13
2. (a) Pereda-Miranda, R.; Hernández, L.; Villavicencio, M. J.; Novelo, M.; Ibarra, P.;
62%
Chai, H.; Pezzuto, J. M. J. Nat. Prod. 1993, 56, 583–593; (b) Mendoza-Espinoza, J.
9
i
A.; López-Vallejo, F.; Fragoso-Serrano, M.; Pereda-Miranda, R.; Cerda-Garc
Rojas, C. M. J. Nat. Prod. 2009, 72, 700–708.
a-
Scheme 3.
3. For our contributions on lactone containing molecules see (a) Yadav, J. S.;
Mandal, S. S.; Reddy, J. S. S.; Srihari, P. Tetrahedron 2011, 67, 4620–4627; (b)
Yadav, J. S.; Reddy, J. S. S.; Mandal, S. S.; Srihari, P. Synlett 2010, 2636–2638; (c)
Srihari, P.; Kumaraswamy, B.; Rao, G. M.; Yadav, J. S. Tetrahedron: Asymmetry
2010, 21, 106–111; (d) Srihari, P.; Bhasker, E. V.; Reddy, A. B.; Yadav, J. S.
Tetrahedron Lett. 2009, 50, 2420–2424; (e) Yadav, J. S.; Kumar, V. N.; Rao, R. S.;
Srihari, P. Synthesis 2008, 1938–1942; (f) Srihari, P.; Kumar, B. P.; Subbarayudu,
K.; Yadav, J. S. Tetrahedron Lett. 2007, 48, 6977–6981; (g) Srihari, P.; Bhasker, E.
V.; Harshavardhan, S. J.; Yadav, J. S. Synthesis 2006, 4041–4045; (h) Yadav, J. S.;
Rao, K. V.; Sridhar Reddy, M.; Prasad, A. R. Tetrahedron Lett. 2006, 47, 4393–
4395; (i) Yadav, J. S.; Prathap, I.; Padmaja, T. B. Tetrahedron Lett. 2006, 47, 3773–
3776.
4. Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936–
938.
5. Still-Gennari olefination of the aldehyde 10 derived from 9 leading to 11 was
performed according to the literature procedure Still, W. C.; Gennari, C.
Tetrahedron Lett. 1983, 24, 4405–4408.
methyl allyl ether, sec-BuLi, IPC2-BOMe (derived from (+)-a-
pinene) and BF3ꢁOEt2] in THF at ꢀ78 to 25 °C in a regioselective
and stereoselective manner to yield the corresponding threo-b-
methoxymethylhomoallyl alcohol 13 in P99% diastereoselectivity
and >95% enantioselectivity (Scheme 3).6
The esterification of the secondary alcohol in 13 with acryloyl
chloride was achieved in the presence of Hünig’s base to afford
compound 14 in 92% yield. Deprotection of TBS and MOM groups
was achieved using 6 N HCl in THF at room temperature, to afford
the diol compound 15 in 85% yield. Acetylation of the diol 15 was
achieved with acetic anhydride and Et3N to yield compound 4
(89%). Finally, ring-closing metathesis of the compound 4 was
accomplished using Grubbs 2nd generation7 catalyst for 3 h at
40 °C in CH2Cl2 to afford the required 5,6 dihydro-2H pyran-2-
one 1 in 90% yield (Scheme 4). The 1H NMR and 13C NMR spectral
data and optical rotation of our synthetic compound8 were in good
agreement with the data previously reported in literature.2a
6. Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1988, 110, 1535–1538. The
de was determined to be >99% by Reverse phase HPLC column: Water HRC18,
300 ꢂ 3.9 mm, 6 micron. Mobile phase used was 30% acetonitrile + 70% water.
Flow rate: 1.0 mL/min. The ee was analyzed on chiral column using chiral pack
IA, 250 ꢂ 4.6 mm, 5
lm, UV254 nm, hexane/2-propanol (85:15) as mobile phase,
flow rate—1.0 mL/min..
7. Crimmins, M. T.; Haley, M. W. Org. Lett. 2006, 8, 4223–4225.
8. The 1H and 13C NMR spectral data and optical rotation, matched in comparison
with the reported data for pectinolide A.2a
Spectroscopic data for representative compounds 1: colourless oil, ½a D29
ꢃ
+196.8
+202.0 (c 0.15, MeOH)]. 1H NMR (300 MHz, CDCl3): d 0.91
O
(c 0.5, MeOH), [lit. ½a D
ꢃ
O
O
Cl
(t, 3H, J = 6.8 Hz), 1.20–1.40 (m, 5H), 1.46–1.77 (m, 1H), 2.04 (s, 3H), 2.09 (s, 3H),
5.16 (dd, 1H, J = 3.02, 6.0 Hz), 5.33 (ddd, 1H, J = 6.0, 7.6, 9.8 Hz), 5.57 (dd, 1H,
J = 3.0, 8.3 Hz), 5.61 (d, 1H, J = 9.8 Hz), 5.71 (dd, 1H, J = 8.3, 11.3 Hz), 6.23 (d, 1H,
J = 9.8 Hz), 6.93 (dd, 1H, J = 6.0, 9.8 Hz). 13C NMR (75 MHz, CDCl3): d 13.9, 20.5,
21.1, 22.4, 27.2, 34.0, 64.2, 69.3, 75.0, 125.1, 126.2, 133.1, 139.9, 162.1, 169.8,
170.3; IR (neat): 2925, 2855, 1740, 1460, 1337, 1226, 1028, 823 cmꢀ1. Mass (ESI-
MS): m/z 333 (M+Na)+. HRMS (ESI) calcd for C16H22O6Na (M+Na)+, 333.1314;
found 333.1324.
OTBS O
6N HCl
OH
O
DIPEA, DMAP
13
THF, rt, 3 h
85%
CH2Cl2
rt, 3 h, 92%
OH
O
OMOM
14
15
Grubbs'
O
O
O
2ndgeneration
(10 mol%)
OAc
O
Ac2O,Et3N
Compound 11: ½a 3D1
ꢃ
+83.6 (c 1.5, CHCl3).1H NMR (300 MHz, CDCl3): d 0.02 (s,
O
6H), 0.87 (s, 12H), 1.29 (t, 3H, J = 7.2 Hz), 1.22–1.59 (m, 6H), 4.16 (q, 2H,
J = 7.2 Hz), 5.23–5.33(m, 1H), 5.66 (dd, 1H, J = 1.0, 11.7 Hz), 6.13 (dd, 1H, J = 8.3,
11.7 Hz); 13C NMR (75 MHz, CDCl3) d ꢀ4.9, ꢀ4.6, 14.0, 14.2, 18.1, 22.6, 25.8, 27.3,
37.0, 60.0, 68.7, 117.4, 153.8, 165.9; IR (neat): 3473, 2934, 1722, 1661, 1371,
1174, 1036, 979 cmꢀ1. Mass (ESI-MS): m/z 323 (M+Na)+.
CH2Cl2, 40oC
DMAP, CH2Cl2
rt, 1 h, 89%
OAc
Pectinolide A
O
O
3 h, 90%
4
1
Compound 13: colourless syrup, ½a D29
ꢃ
+56.6 (c 1.5, CHCl3), 1H NMR (300 MHz,
N
N
Mes
Ph
Mes
Cl
CDCl3): d 0.04 (s, 6H), 0.88 (s, 12H), 1.20–1.60 (m, 6H), 2.59 (bs, -OH), 3.39 (s,
3H), 3.84–3.94 (m, 1H), 4.16–4.30 (m, 1H), 4.35–4.51 (m, 1H), 4.57 (d, 1H,
J = 6.6 Hz), 4.70 (d, 1H, J = 6.6 Hz), 5.22–5.37 (m, 3H), 5.45–5.75(m, 2H); 13C
NMR (75 MHz, CDCl3): d ꢀ4.9, ꢀ4.3, 14.0, 17.6, 22.5, 25.8, 27.5, 37.7, 55.7, 68.7,
69.8, 80.9, 94.1, 119.6, 126.2, 134.2, 138.0; IR (neat): 3447, 2926, 2857, 1757,
1462, 1252, 1110, 1034, 931, 838, 775 cmꢀ1. Mass (ESI-MS): m/z 359 (M+H)+;
Ru
Cl
PCy3
2
ndgeneration Grubbs' catalyst
Scheme 4.