Table 1 The coalescence temperatures and proton exchange rates of
the hydroxyl proton signals
exchange rates. This simple 13C-NMR strategy is suitable for
analyzing extremely weak interactions including those between
carbohydrates, and identifies the hydroxyl protons involved in
hydrogen bonding and metal coordination.
CaCl2 (1.0 M)
No CaCl2
Tc/K
kex/sÀ1
Tc/K
kex/sÀ1
Residues
We thank Drs F. Hayashi, M. Yoshida, and C. Kurosaki
(RIKEN) for technical support of high-field NMR spectra.
We thank Dr Y. Ito (RIKEN) for advice on the synthesis. We
also thank Dr T. Suetake for the initial 13C-NMR study. This
work was supported in part by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) of Japan.
Gal 2
Gal 3
Gal 4
Gal 6
Fuc 2
Fuc 3
Fuc 4
GlcNAc 6
283
263
298
278
283
273
283
268
25
27
37
32
33
23
36
39
273
o263
4298
o263
273
30
n.d.
n.d.
n.d.
42
n.d.
45
o263
273
263
32
Notes and references
13C-signals were collected from 263 K to 298 K in 5 K increments. Tc:
coalescence temperatures, kex: proton exchange rates at coalescence
temperatures calculated using Gutowski’s equation, with an overall
error of 10%. n.d.: not determined.
1 H. J. Gabius, H. C. Siebert, S. Andre, J. Jime
H. Rudiger, ChemBioChem, 2004, 5, 740–764.
2 I. Bucior andM. M. Burger, Curr. Opin. Struct. Biol., 2004, 14, 631–637.
3 A. Bax and S. Grzesiek, Acc. Chem. Res., 1993, 26, 131–138.
4 S. Grzesiek and A. Bax, J. Biomol. NMR, 1993, 3, 627–638.
´
nez-Barbero and
5 G. Wagner and K. Wuthrich, J. Mol. Biol., 1982, 160, 343–361.
¨
6 A. K. Mittermaier and L. E. Kay, Trends Biochem. Sci., 2009, 34,
601–611.
7 L. Poppe and H. van Halbeek, Nat. Struct. Biol., 1994, 1, 215–216.
8 B. Henry, H. Desvaux, M. Pristchepa, P. Berthault, Y. M. Zhang,
J. M. Mallet, J. Esnault andP. Sinay, Carbohydr. Res., 1999, 315, 48–62.
9 H. C. Siebert, M. Frank, C.-W. von der Lieth, J. Jime
´
nez-Barbero and
nez-
H. J. Gabius, in NMR Spectroscopy of Glycoconjugates, ed. J. Jime
´
Barbero and T. Peters, WILEY-VCH, Weinheim, 2003, pp. 39–57.
10 H. C. Siebert, S. Andre, J. L. Asensio, F. J. Canada, X. Dong,
J. F. Espinosa, M. Frank, M. Gilleron, H. Kaltner, T. Kozar,
´
N. V. Bovin, C. W. von Der Lieth, J. F. Vliegenthart, J. Jimenez-
Barbero and H. J. Gabius, ChemBioChem, 2000, 1, 181–195.
11 P. E. Pfeffer, K. M. Valentine and F. W. Parrish, J. Am. Chem.
Soc., 1979, 101, 1265–1274.
12 T. W. Marshall, Mol. Phys., 1961, 4, 61–63.
Fig. 3 The hydroxyl protons whose exchange rate slows in the
presence of Ca2+ are indicated in gray circles (A) as well as large
white balls (B) on the crystal structure of the LewisX trisaccharide.29
and coworkers analyzed a cis-interaction mode of LewisX using
a methylene-bridged LewisX dimer (LewisXa–CH2–LewisXb)
attached at the 6-position of GlcNAc, and their model study
suggested that Ca2+ is pentavalently co-ordinated at O2,3 of
Gala, O6 of Galb, and O2,3 of Fucb.31 These residues are
included in our analyses. The slow proton exchange rates of
GalC2,3,6 and FucC2,3 hydroxyl groups, which we observed
in the presence of Ca2+, would be at least partially due to
co-ordination with Ca2+. Further, our data indicate that
Ca2+ slows the proton-exchange of the hydroxyl groups of
GlcNAcC6 and FucC4. They might also coordinate the Ca2+
in water since the large ionic radius of this metal ion allows for
octavalent coordination,32 or they could form intermolecular
hydrogen-bonds with another LewisX molecule or with the
surrounding water. The hydrogen bonds produced upon an
addition of Ca2+ would be in an intermolecular manner
because no significant structural change has been observed
upon addition of Ca2+. This information will be of great value
in elucidating the interaction mode of LewisX glycans, which
cannot be easily provided by other conventional NMR methods
e.g. in a typical chemical shift perturbation experiment.
We describe a 13C-NMR technique that analyzes LewisX–
LewisX interactions through measurement of proton-exchange
rates under physiological conditions. The technique is able to
quantify the proton exchange of hydroxyl groups on glycans in
100% water, in the ten to hundred milliseconds range. It
revealed that Ca2+ slows the rates of H/D exchange of several
hydroxyl protons of LewisX. These groups must be involved
in the LewisX–LewisX interaction. Our approach not only
observes hydroxyl protons but also precisely evaluates their
dynamics through measurement of the small difference in their
13 T. Dziembowska, P. E. Hansen and Z. Rozwadowski, Prog. Nucl.
Magn. Reson. Spectrosc., 2004, 45, 1–29.
14 S. N. Smirnov, N. S. Golubev, G. S. Denisov, H. Benedict,
P. Schah-Mohammedi and H.-H. Limbach, J. Am. Chem. Soc.,
1996, 118, 4094–4101.
15 K. Uchida, J. L. Markley and M. Kainosho, Biochemistry, 2005,
44, 11811–11820.
16 M. Takeda, J. Jee, T. Terauchi and M. Kainosho, J. Am. Chem.
Soc., 2010, 132, 6254–6260.
17 M. Takeda, J. Jee, A. M. Ono, T. Terauchi and M. Kainosho,
J. Am. Chem. Soc., 2009, 131, 18556–18562.
18 J. H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson,
L. Hansson, M. H. Lerche, R. Servin, M. Thaning and
K. Golman, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 10158–10163.
19 J. Reuben, J. Am. Chem. Soc., 1984, 106, 6180–6186.
20 J. C. Christofides and D. B. Davies, J. Am. Chem. Soc., 1983, 105,
5099–5105.
21 K. Bock and R. U. Lemieux, Carbohydr. Res., 1982, 100, 63–74.
22 I. Eggens, B. Fenderson, T. Toyokuni, B. Dean, M. Stroud and
S. Hakomori, J. Biol. Chem., 1989, 264, 9476–9484.
23 G. Siuzdak, Y. Ichikawa, T. J. Caulfield, B. Munoz, C. H. Wong
and K. C. Nicolaou, J. Am. Chem. Soc., 1993, 115, 2877–2881.
24 C. Gege, A. Geyer and R. R. Schmidt, Eur. J. Org. Chem., 2002,
2475–2485.
25 G. Nodet, L. Poggi, D. Abergel, C. Gourmala, D. X. Dong,
Y. M. Zhang, J. M. Mallet and G. Bodenhausen, J. Am. Chem.
Soc., 2007, 129, 9080–9085.
26 A. Geyer, C. Gege and R. R. Schmidt, Angew. Chem., Int. Ed.,
1999, 38, 1466–1468.
27 J. L. Mills and T. Szyperski, J. Biomol. NMR, 2002, 23, 63–67.
28 J. J. Skalicky, J. L. Mills, S. Sharma and T. Szyperski, J. Am.
Chem. Soc., 2001, 123, 388–397.
29 S. Perez, N. Mouhous-Riou, N. E. Nifant’ev, Y. E. Tsvetkov,
B. Bachet and A. Imberty, Glycobiology, 1996, 6, 537–542.
30 S. Kobayashi and Y. Yamashita, Acc. Chem. Res., 2011, 44, 58–71.
31 A. Geyer, C. Gege and R. R. Schmidt, Angew. Chem., Int. Ed.,
2000, 39, 3245–3249.
32 W. J. Cook and C. E. Bugg, Carbohydr. Res., 1973, 31, 265–275.
c
10802 Chem. Commun., 2011, 47, 10800–10802
This journal is The Royal Society of Chemistry 2011