2800
R. Pastorek et al. / Polyhedron 30 (2011) 2795–2800
The room temperature Mössbauer spectrum of 9 consists of one
Regional Development Fund (CZ.1.05/2.1.00/03.0058), the Opera-
tional Program Education for Competitiveness – European Social
Fund (CZ.1.07/2.3.00/20.0017) of the Ministry of Education, Youth
and Sports of the CzechRepublic. The authors also thank Assoc. Prof.
singlet with an isomer shift of 0.24 mm sꢁ1, which is consistent
with the results of the crystallographic study and it proves the
presence of the tetrahedral [FeCl4]ꢁ anion involving the Fe(III)
ion in the high-spin state.
ˇ
ˇ
Zdenek Šindelár for magnetic susceptibility measurements,
ˇ
Mr. Zdenek Marušák for STA/QMS measurements, and Dr. Jan Filip
3.4. Thermal analysis (TG/DTA)
for XRD measurements.
The thermal properties of the complexes 9–14 were studied by
means of simultaneous TG/DTA analyses (the thermal properties
of 1–8 were not studied because of the presence of the explosive per-
chlorate anion in their structure). All the complexes 9–14 decom-
posed in one step without the formation of thermally stably
intermediates and the process of thermal decomposition is con-
nected withseveral endo- and exo-effects (see Table 3). Interestingly,
the decay of 10 finished at 477 °C, which differs significantly from
other complexes, whose degradation proceeded to 728–796 °C.
Thermal studies also showed that complexes 9–12 are non-solvated,
while 13 and 14 were found to be hydrated. The weight losses de-
tected at the beginning of the TG curves of [Ni(bzipdtc)3][FeCl4]ꢀH2O
(13) and [Ni(chetdtc)3][FeCl4]ꢀ0.5H2O (14) equal 1.7% (1.9% calc. for
H2O), and 1.1% (1.0% calc. for 0.5H2O), respectively, and they were
caused by the water molecules elimination, as proved by the mass
spectrometry of the thermal degradation products, where the frag-
ment corresponding to water molecule was unambiguously identi-
fied in the case of 13 (see Fig. 4). The final product of the thermal
decay of 13 performed in air was identified by XRD as a mixture of
NiFe2O4 (PDF-4 No. 01-074-2081; ca 63%) and Fe2O3 (PDF-4 No.
01-086-2368; ca 37%), while the residue of the analysis carried out
in a dynamic argon atmosphere consists of Fe5Ni4S8 (PDF-4 No.
01-086-2470; ca 86%) and FeS (PDF-4 No. 03-065-6841; ca 14%).
Appendix A. Supplementary data
CCDC 827947 contains the supplementary crystallographic data
for [Ni(hmidtc)3][FeCl4]. These data can be obtained free of charge
Cambridge Crystallographic Data Centre, 12 Union Road, Cam-
bridge CB2 1EZ, UK; fax: +44 1223-336-033; or e-mail:
References
[1] E. Froeschmann, WO 88/08022 (1988).
[2] M. Gielen, E.R.T. Tiekink, Metallotherapeutic Drugs and Metal-based
Diagnostic Agents, Willey, London, 2005.
[3] S. Aldridge, Angew. Chem. Int. Ed. 47 (2008) 2348.
[4] M. Carnes, D. Buccella, J.Y.C. Chen, A.P. Ramirez, N.J. Turro, Angew. Chem. Int.
Ed. 48 (2009) 290.
[5] T.C. Li, A.M. Spokoyny, C. She, O.K. Farha, C.A. Mirkin, T.J. Marks, J.T. Hupp, J.
Am. Chem. Soc. 132 (2010) 4580.
[6] H.C. Brinkhoff, J.A. Cras, J.J. Steggerda, J. Willemse, Recl. Trav. Chim. Pays-Bas
88 (1969) 633.
[7] A. Avdeef, J.P. Fackler, R.G. Fisher, J. Am. Chem. Soc. 92 (1970) 6972.
[8] J.P. Fackler, A. Avdeef, R.G. Fisher, J. Am. Chem. Soc. 95 (1973) 774.
[9] A.R. Hendrickson, R.L. Martin, N.M. Rohde, Inorg. Chem. 14 (1975) 2980.
[10] R.M. Golding, C.M. Harris, K.J. Jessop, W.C. Tennant, Aust. J. Chem. 25 (1972)
2567.
[11] J.A. McCleverty, N.J. Morrison, J. Chem. Soc., Dalton Trans. (1976) 541.
[12] S.V. Larionov, L.A. Patrina, A.N. Shanshin, Koord. Chim. 10 (1984) 92.
4. Conclusions
ˇ
[13] R. Pastorek, F. Brezina, D. Krausová, Z. Chem. 30 (1990) 70.
ˇ
ˇ
ˇ
ˇ
[14] R. Pastorek, J. Kamenícek, Z. Trávnícek, Z. Šindelár, F. Brezina, S. Sobancová,
Palacki. Olomuc., Fac. Rer. Nat. 117 (1994) 11.
Octahedral nickel(IV) dithiocarbamato complexes of two
types, i.e. [Ni(ndtc)3]ClO4 (1–8) and [Ni(ndtc)3][FeCl4]ꢀyH2O
(y = 0 for 9–12, 1 for 13 and 0.5 for 14), have been prepared
and characterized. The series involves the complex [Ni(h-
midtc)3][FeCl4] (9), whose crystallographically determined struc-
ture represents only the third example of a nickel(IV) complex
involving the [Ni(ndtc)3]+ moiety with three bidentate S,S0-donor
dithiocarbamate anions (ndtc) arranged in a distorted octahedral
geometry.
[15] W. Chen, H. Li, Z.J. Zhong, K. Zhang, X.Z. You, Sect. C: Cryst. Struct. Commun. 52
(1996) 3030.
[16] K. Oyaizu, K. Yamamoto, Y. Ishii, E. Tsuchida, Chem. Eur. J. 5 (1999) 3193.
[17] Gmelins Handbuch der Anorganischen Chemie, Nickel, Teil C, Lief. 2, Verlag
Chemie, GmbH, Weinheim, 1969.
[18] E. König, Landolt-Börstein, Springer, Berlin, 1966.
[19] CrysAlis CCD and CrysAlis RED, Version 1.171.33.52, Oxford Diffraction Ltd.,
England, 2009.
[20] G.M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 64 (2008) 112.
[21] K. Brandenburg, DIAMOND, Release 3.1f, Crystal Impact GbR, Bonn, Germany,
2006.
[22] C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L.
Rodriguez-Monge, R. Taylor, J. Appl. Crystallogr. 41 (2008) 466.
[23] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
Acknowledgment
[24] F.H. Allen, Acta Crystallogr., Sect. B: Struct. Sci. 58 (2002) 380.
[25] L. Yang, R. Powel, R.P. Houser, J. Chem. Soc., Dalton Trans. (2007) 955.
[26] D. Wyrzykowski, R. Kruszyn´ ski, U. Kucharska, Z. Warnke, Z. Anorg. Allg. Chem.
632 (2006) 624.
TheauthorsgratefullythanktheMinistryofEducation,Youthand
Sports of the Czech Republic (MSM6198959218), the Operational
Program Research and Development for Innovations – European