ChemComm
Communication
Table 3 Functionalization of 2-phenylpyridine with aryl chlorides and heteroaryl
We are indebted to the MICIIN of Spain (Projects CTQ2010-
14796/BQU) and Consolider Ingenio 2010 (CSD2007-00006) for
financial support.
chlorides
Notes and references
1 For representative reviews, see: (a) B.-J. Li, S.-D. Yang and Z.-J. Shi,
Synlett, 2008, 949; (b) L. Ackermann, R. Vicente and A. R. Kapdi,
Angew. Chem., Int. Ed., 2009, 48, 9792; (c) D. A. Colby, R. G. Bergman
and J. A. Ellman, Chem. Rev., 2009, 110, 624; (d) L. Ackermann, Chem.
Rev., 2011, 111, 1315; (e) C. Fischmeister and H. Doucet, Green Chem.,
2011, 13, 741. For a recent review on C–H bond activation in water,
see: ( f ) B. Li and P. H. Dixneuf, Chem. Soc. Rev., 2013, 42, 5744.
2 (a) P. B. Arockiam, C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012, 112
5879; (b) L. Ackermann and R. Vicente, Top. Curr. Chem., 2010, 292, 211.
3 For leading reports, see: (a) L. Ackermann, Org. Lett., 2005, 7, 3123;
(b) L. Ackermann, A. Althammer and R. Born, Angew. Chem., Int. Ed.,
2006, 45, 2619; (c) L. Ackermann, R. Vicente and A. Althammer, Org. Lett.,
2008, 10, 2299; (d) S. Oi, R. Funayama, T. Hattori and Y. Inoue, Tetrahedron,
2008, 64, 6051 and references therein; (e) L. Ackermann, R. Born and
R. Vicente, ChemSusChem, 2009, 2, 546; ( f) F. Pozgan and P. H. Dixneuf,
Adv. Synth. Catal., 2009, 351, 1737; (g) P. Arockiam, V. Poirier,
C. Fischmeister, C. Bruneau and P. H. Dixneuf, Green Chem., 2009,
Entry ArCl or Het-X
Method Conv. (m/d)a
1
2
1
2
1
2
1
2
1
1
2
1
1
2
82 (88/12)
87 (78/22)
93 (88/12)b
96 (71/29)
79 (92/8)
92 (78/22)
31 (66/34)c
25 (52/48) f
84 (79/21)
29 (only m)
45 (85/15) f
40 (84/16) f
89 (71/29)
88 (71/29)
1
2
3
R = H
(1)
(2)
(3)
R = p-CH3
R = p-OCH3
4
5
6
R = p-CN
R = p-OH
R = m-N(CH3)2 (6)
R = o-NH2
(4)
(5)
7
8
9
(7)
(8)
(9)
R = o-Cl
´
11, 1871; (h) L. Ackermann, P. Novak, R. Vicente, V. Pirovano and H. K.
1
2
78 (55/45)
74 (59/41)
Potukuchi, Synthesis, 2010, 2245; (i) Y. Aihara and N. Chatani, Chem. Sci.,
2013, 4, 664; ( j) J. Kim, J. Kim and S. Chang, Chem.–Eur. J., 2013, 23, 7328;
(k) A. Prades, M. Poyatos and E. Peris, Adv. Synth. Catal., 2010, 352, 1155.
4 Other ruthenium complexes have also been used as catalysts in
direct arylations, (a) [RuCl2(COD)]n: M. Seki, ACS Catal., 2011, 1, 607;
(b) [RuH(codyl)]2[BF4]: W. Li, P. B. Arockiam, C. Fischmeister,
C. Bruneau and P. H. Dixneuf, Green Chem., 2011, 13, 2315;
(c) [RuCl2(PPh3)3]: see ref. 9.
5 (a) I. Ozdemir, S. Demir, B. Cetinkaya, C. Gourlaouen, F. Maseras,
C. Bruneau and P. H. Dixneuf, J. Am. Chem. Soc., 2008, 130, 1156;
(b) E. Ferrer Flegeau, C. Bruneau, P. H. Dixneuf and A. Jutand, J. Am.
Chem. Soc., 2011, 133, 10161; (c) L. Ackermann, R. Vicente,
H. K. Potukuchi and V. Pirovano, Org. Lett., 2010, 12, 5032.
6 P. B. Arockiam, C. Fischmeister, C. Bruneau and P. H. Dixneuf,
Angew. Chem., Int. Ed., 2010, 49, 6629.
7 For further examples of ruthenium(II) catalysts active in water, see:
(a) B. Li, K. Devaraj, C. Darcel and P. H. Dixneuf, Tetrahedron, 2012,
68, 5179; (b) P. B. Arockiam, C. Fischmeister, C. Bruneau and
P. H. Dixneuf, Green Chem., 2013, 15, 67; (c) K. S. Singh and
P. H. Dixneuf, ChemCatChem, 2013, 5, 1313; (d) L. Ackermann,
N. Hofmann and R. Vicente, Org. Lett., 2011, 13, 1875.
10
11
(10)
(11)
1
2
79 (51/49)
67 (66/34)
1
2
68 (76/24)d
47 (16/84)
12
13
(12)
(13)
5
1
2
24 (88/12)
19 (74/26)e
Method 1: RuCl3ꢀnH2O (0.05 mmol,
mol%), 2-phenylpyridine
(1 mmol), aryl/heteroaryl halide (1.2 mmol), NaOAc (3 mmol), Zn
(0.15 mmol), 110 1C for 20 h in 2 mL of water. Method 2: RuCl3ꢀnH2O
(0.05 mmol, 5 mol%), 2-phenylpyridine (1 mmol), aryl/heteroaryl halide
(1.2 mmol), NaOAc (3 mmol), Zn (0.15 mmol), 140 1C under MW
a
irradiation for 1 h in 2 mL of water. Conversion and product ratio
b
c
determined by NMR. 0.25 eq. Zn, 1 eq. NaOAc, 1.5 eq. Ar–Cl. 0.25 eq.
d
e
f
Zn, 1 eq. NaOAc, 42 h a 110 1C. 1.5 eq. Ar–Cl. 180 1C, 1 h. Homo-
coupling of 2-phenylpyridine instead of the diarylated product.
higher conversions and lower selectivity depending on the silver salts
used (conversion; m/d values of 94; 67/33 and 68; 82/18% for AgSbF6
and AgNO3, respectively). Remarkably, ESI(+)-MS analysis of the
RuCl3–Zn (or H3PO2)–NaOAc catalytic system in THF solutions also
revealed the presence of the dimeric [Ru2(m-OAc)4]+ cation (see ESI†).
In summary, in this work, we have shown that the RuCl3ꢀnH2O–
Zn–NaOAc catalytic system is active for the selective ortho mono-
arylation of 2-phenylpyridine and functionalized aryl chlorides in
water.16 Since it is formed from commercially available components,
inexpensive aryl chloride substrates, and no further addition of
K2CO3isneeded,itcanbeusedpreferablytotheruthenium(II)catalysts
[Ru(O2CR)2(Z6-p-cymene)] and [RuCl2(PPh3)(Z6-p-cymene)].6,7b Since
the reaction is also amenable on a multi-gram scale, the practical
application of this methodology provides an attractive synthetic
tool to conventional direct arylation methodologies via C–H bond
activation–functionalization of arenes by N-containing heterocyclic
directing groups. This is a further example of the ruthenium based
catalyticsystemactiveinwater whichnotonlyavoidstheuseoforganic
8 For examples active in NMP, see: (a) L. Ackermann, A. Althammer
and R. Born, Synlett, 2007, 2833; (b) K. Cheng, Y. Zhang, J. Zhao and
C. Xie, Synlett, 2008, 1325; (c) L. L. Ackermann, A. A. Althammer and
R. R. Born, Tetrahedron, 2008, 64, 6115.
9 It has also been described that RuCl3ꢀnH2O is active for aryl chlorides
in NMP at 140 1C but the addition of PPh3 and M2CO3 (M = Na, K) as a
base, is required: (a) N. Luo and Z. Yu, Chem.–Eur. J., 2010, 16, 787. For
a similar reaction carried out in polyethylene glycol (PEG), see:
(b) L. Ackermann and R. Vicente, Org. Lett., 2009, 11, 4922.
10 (a) The Chemistry of Ruthenium, ed. E. A. Seddon and K. R. Seddon,
Elsevier Science, 1984; (b) Advanced Inorganic Chemistry, ed.
F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann, John
Wiley & Sons, 6th edn, 1999.
11 Attempts to use the isolated complexes [Ru(acac)2L2] (L = Me2SO, PPh3)
under similar reaction conditions were unsuccessful (see ESI† for details).
12 For a review on microwave assisted C–C bond forming reactions, see:
V. P. Mehta and E. V. Van der Eycken, Chem. Soc. Rev., 2011, 40, 4925.
13 Catalysis by ruthenium nanoparticles was ruled out as both TEM
images and Hg poisoning tests were negative.
14 Examples on mechanistic studies based on ESI-MS can be found in
¨
(a) M. N. Eberlin, Eur. J. Mass Spectrom., 2007, 13, 19; (b) D. Schroder,
Acc. Chem. Res., 2012, 45, 1521.
15 (a) F. A. Cotton, M. Matusz and B. Zhong, Inorg. Chem., 1988, 27, 4368;
(b) N. Komiya, T. Nakae, H. Sato and T. Naota, Chem. Commun., 2006, 4829.
solvents but also reaches an enhanced catalytic activity.17 Further 16 The reactions proceed under biphasic ‘‘on water’’ conditions.
17 (a) Ruthenium Catalysts and Fine Chemistry, ed. C. Bruneau and
synthetic applications of this catalytic methodology in aqueous media
andmechanisticstudiestogaininsightintotheactiveintermediateare
P. H. Dixneuf, Springer, Berlin, 2004; (b) Metal-Catalyzed Reactions in
Water, ed. P. H. Dixneuf and V. Cadierno, Wiley-VCH, 2013; (c) Water in
presently under way.
Organic Synthesis, ed. Shu Kobayashi, Thieme, Stuttgart, Germany, 2012.
c
8322 Chem. Commun., 2013, 49, 8320--8322
This journal is The Royal Society of Chemistry 2013