848
R. M. Shaker et al. · 5-Aminouracil as a Building Block in Heterocyclic Synthesis
D2O-exchangeable), 12.11 (s, 1H, NH, D2O-exchangeable), Synthesis of 5-(4-ethoxy-2-(ethylthio)-6-oxo-1,6-dihydro-
12.13 (s, 1H, NH, D2O-exchangeable), 12.26 (s, 1H, HN, pyrimidin-5-yl)-1,3,7-triethyl-6-phenyl-1H-pyrrolo[2,3-d]-
D2O-exchangeable). – 13C NMR (100 MHz, [D6]DMSO): pyrimidine-2,4(3H,7H)-dione (18)
δ = 86.57, 97.98, 109.25, 109.98, 126.75, 127.72, 128.25,
Ethyl iodide (3.79 g, 24 mmol) was added to a mixture
131.69, 136.54, 138.70, 151.58, 155.71, 161.33, 173.59,
of 17 (0.739 g, 2 mmol) and anhydrous potassium carbonate
200.11. – MS (EI, 70 eV): m/z (%) = 369.11 (70) [M]+,
(1.65 g, 12 mmol) in DMSO (10 mL). The reaction mixture
370.12 (25.6), 371.22 (20). – C16H11N5O4S (369.35): calcd.
was stirred for 86 h at r. t. and then poured into cold water, the
C 52.03, H 3.00, N 18.96; found C 52.19, H 2.96, N 18.91.
precipitate was collected by filtration and recrystallized from
diethyl ether-petroleum ether to give 18 (yield 40 %). Col-
orless solid, m. p. 230 – 233 ◦C. – IR (film): ν = 3205, 3064,
5-(6-Hydroxy-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-
6-phenyl-1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione
2968, 1703, 1682 cm−1. – 1H NMR (400 MHz, [D6]DMSO):
δ = 1.01 (t, 3H, J = 9 Hz, CH3), 1.15 (t, 3H, J = 7 Hz,
CH3), 1.25 (t, 3H, J = 7 Hz, CH3), 1.31 (t, 3H, J = 7 Hz,
CH3), 1.36 (t, 3H, J = 11 Hz, CH3), 3.16 (q, 2H, J = 8 Hz,
CH2), 3.76 (q, 2H, J = 8 Hz, CH2), 3.94 (q, 2H, J = 10 Hz,
CH2), 4.14 (q, 2H, J = 7 Hz, CH2), 4.21 (q, 4H, J = 7 Hz,
CH2), 7.21 – 7.50 (m, 5H, ArH), 12.11 (s, 1H, NH). – MS
(EI, 70 eV): m/z (%) = 508.25 (6.87), 509.20 (100) [M]+,
510.20 (33), 511.15 (11). – C26H31N5O4S (509.62): calcd.
C 61.28, H 6.13, N 13.74; found C 61.21, H 6.22, N 13.79.
(17b)
Colorless powder, yield 76 % (DMF); m. p. > 350 ◦C. – IR
(film): ν = 3173, 3030, 2822, 1702, 1670 cm−1. – 1H NMR
(400 MHz, [D6]DMSO): δ = 7.21 (t, 1H, Ar-H, J = 7.0),
7.30 (t, 2H, Ar-H, J = 8), 7.68 (d, 2H, Ar-H, J = 7), 9.53
(s, 2H, NH, D2O-exchangeable), 10.08 (s, 1H, NH, D2O-
exchangeable), 10.44 (s, 1H, NH, D2O-exchangeable), 11.71
(s, 1H, NH, D2O-exchangeable). – 13C NMR (100 MHz,
[D6]DMSO): δ = 100.01, 109.72, 126.77, 127.35, 128.04,
132.16, 138.53, 151.15, 151.57, 155.74, 163.09. – MS (EI,
70 eV): m/z (%) = 355.2 (10) [M+2]+, 353.2 (25) [M]+. –
C16H11N5O5 (353.29): calcd. C 54.39, H 3.14, N 19.82;
found C 54.22, H 3.28, N 19.90.
Acknowledgement
The authors are grateful to the Alexander von Humboldt
foundation for a donation of a Milestone Microwave Labsta-
tion which was of great help in completing this work.
[1] P. G. Baraldi, M. A. Tabrizi, S. Gessi, P. A. Borea,
Chem. Rev. 2008, 108, 238.
[2] E. Petricci, C. Mugnaini, M. Radi, A. Togninelli,
C. Bernardini, F. Manetti, M. C. Parlato, M. L. Ren-
zulli, M. Alongi, C. Falciani, F. Corelli, M. Botta,
Arkivoc 2006, vii, 452.
[3] A. Manlove, M. P. Groziak, In Progress in Heterocyclic
Chemistry; G. W. Gribble, J. A. Joule, Eds.; Elsevier,
Amsterdam 2009, 20, pp. 333.
[9] T. McHardy, J. J. Caldwell, K. M. Cheung, L. J. Hunter,
K. Taylor, M. Rowlands, R. Ruddle, A. Henley, A. de-
Haven Brandon, M. Valenti, T. G. Davies, L. Fazal,
L. Seavers, F. I. Raynaud, S. A. Eccles, G. W. Aherne,
M. D. Garrett, I. Collins, J. Med. Chem. 2010 53, 2239.
[10] A. Gangjee, J. Yang, J. J. McGuire, R. L. Kisliuk,
Bioorg. Med. Chem. 2006, 14, 8590.
[11] Z. Janeba, J. Balzarini, G. Andrei, R. Snoeck, E. De
Clercq, M. J. Robins, J. Med. Chem., 2005, 48,
4690.
[12] A. Gangjee, S. Kurup, M. A. Ihnat, J. E. Thorpe, S. S.
Shenoy, Bioorg. Med. Chem. 2010, 18, 3575.
[13] C. V. N. S. Varaprasad, S. K. Ramasamy, J. L. Girardet,
E. Gunic, V. Lai, Z. Zhong, H. An, Z. Hong, Bioorg.
Chem. 2007, 35, 25.
[14] Y. H. Koh, J. H. Shim, J. L. Girardet, Z. Hong, Bioorg.
Med. Chem. Lett. 2007, 17, 5261.
[4] S. D. Chamberlain, J. W. Wilson, F. Deanda, S. Pat-
naik, A. M. Redman, B. Yang, L. Shewchuk, P. Sab-
batini, M. A. Leesnitzer, A. Groy, C. Atkins, R. Gerd-
ing, A. M. Hassell, H. Lei, R. A. Mook, Jr., G. Moorthy,
J. L. Rowand, K. L. Stevens, R. Kumar, J. B. Shotwell,
Bioorg. Med. Chem. Lett. 2009, 19, 469.
[5] S. J. Tangeda, A. Garlapati, Eur. J. Med. Chem. 2010,
45, 1453.
[6] M. S. Mohamed, R. Kamel, S. S. Fatahala, Eur. J. Med.
Chem. 2010, 45, 2994.
[7] K. M. H Hilmy, M. M. A. Khalifa, M. A. Hawata,
R. M. A. Keshk, A. A. El-Torgman, Eur. J. Med. Chem.
2010, 45, 5243.
[8] M. M. Ghorab, F. A. Ragab, H. I. Heiba, H. A. Youssef,
M. G. El-Gazzar, Bioorg. Med. Chem. Lett. 2010, 20,
6316.
[15] K. J. Moriarty, H. K. Koblish, T. Garrabrant,
J. Maisuria, E. Khalil, F. Ali, L. P. Petrounia,
C. S. Crysler, A. C. Maroney, D. L. Johnson, R. A.
Galemmo, Bioorg. Med. Chem. Lett. 2006, 16, 5778.
[16] R. M. Shaker, M. Abd Elrady, Z. Naturforsch. 2008,
63b, 1431.
[17] R. M. Shaker, K. U. Sadek, E. A. Hafez, M. Abd El-
rady, Z. Naturforsch. 2010, 65b, 1485.
Unauthenticated
Download Date | 12/18/15 8:28 AM