766
S. V. Vasilyeva et al.
14. Moses, J.E.; Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev. 2007, 36,
1249–1262.
15. Meldal, M.; Tornoe, C.W. Cu-catalyzed azide–alkyne cycloaddition. Chem. Rev. 2008, 108, 2952–3015.
16. Sirivolu, V.R.; Chittepu, P.; Seela, F. DNA with branched internal side chains: synthesis of 5-
tripropargylamine-dU and conjugation by an azide–alkyne double click reaction. Chem. Bio. Chem.
2008, 9, 2305–2316.
17. Vasileva, S.; Konevetz, D.; Budilkin, B.; Abramova, T.; Kasatkina, N.; Silnikov, V. A new linker group
for functionalization of nucleic acids. Nucleic Acids Symp. Ser. 2008, 52, 385–386.
18. Lee, S.E.; Sidorov, A.; Gourlain, T.; Mignet, N.; Thorpe, S.J.; Brazier, J.A.; Dickman, M.J.; Hornby,
D.P.; Grasby, J.A.; Williams, D.M. Enhancing the catalytic repertoire of nucleic acids: a systematic
study of linker length and rigidity. Nucleic Acids Res. 2001, 29, 1565–1573.
19. Chang, P.K.; Welch, A.D. Iodination of 2ꢁ-deoxycytidine and related substances. J. Med. Chem. 1963,
6, 428–430.
20. Chang, P.K. Iodination of 2ꢁ-deoxycytidine and related substances. A reinvestigation of the structures
of the by-product, C9H10I2N2O5, and its derivatives. J. Org. Chem. 1965, 30, 3913–3915.
21. Lipkin, D.; Howard, F.B.; Nowotny, D.; Sano, M. The iodination of nucleosides and nucleotides.
J. Biol. Chem. 1963, 238, PC2249–PC2251.
22. Kumar, R.; Wiebe, L.I.; Knaus, E.E. A mild and efficient methodology for the synthesis of 5-halogeno
uracil nucleosides that occurs via a 5-halogeno-6-azido-5,6-dihydro intermediate. Can. J. Chem. 1994,
72, 2005–2010.
23. Asakura, J.; Robins, M.J. Cerium (IV)-mediated halogenation at C-5 of uracil derivatives. J. Org. Chem.
1990, 55, 4928–4933.
24. a) Robins, M.; Barr, P.J. Nucleic acid related compounds. 39. Efficient conversion of 5-iodo to 5-
alkynyl and derived 5-substituted uracil bases and nucleosides. J. Org. Chem. 1983, 48, 1854–1862
b) McGuigan, C.; Yarnold, C.J.; Jones, G.; Velazquez, S.; Barucki, H.; Brancale, A.; Andrei, G.;
Snoeck, R.; De Clercq, E.; Balzarini, J. Potent and selective inhibition of varicella-zoster virus (VZV)
by nucleoside analogues with an unusual bicyclic base. J. Med. Chem. 1999, 42, 4479–4484.
25. Meyer, R.B., Jr. Incorporaion of modified bases into oligonucleotides. Methods Mol. Biol. 1994, 26,
73–91.
26. Hovinen, J. A simple synthesis of N4-(6-aminohexyl)-2ꢁ-deoxy-5ꢁ-O-(4,4ꢁ-dimethoxytrityl)cytidine. Nu-
cleosides Nucleotides Nucleic Acids. 1998, 17, 1209–1213.
27. Wlassoff, W.; Dobrikov, M.; Safronov, I.; Dudko, R.; Lavrik, O.I. Synthesis and characterization of
(d)NTP derivatives substituted with residues of different photoreagents. Bioconjugate Chem. 1995, 6,
352–360.
28. McGee, D.P.C.; Sebesta, D.; O’Rourke, S.; Martinez, R.; Jung, M.; Pieken, W. Novel nucleosides
via intramolecular functionalization of 2,2ꢁ-anhydrouridine derivatives. Tetrahedron Lett. 1996, 37,
1995–1998.
29. a) Divakar, K.; Reese, C. J. 4-(1,2,4-triazol-1-yl)- and 4-(3-nitro-1,2,4-triazol-1-yl)-1-(β-D-2,3,5-tri-O-
acetylarabinofuranosyl)pyrimidin-2(1H)-ones. Valuable intermediates in the synthesis of derivatives
of 1-(β-D-arabinofuranosyl)cytosine (ara-C). Chem. Soc., Perkin Trans. I, 1982, 1171–1176; b) Roget,
A.; Bazin, H.; Teoule, R. Synthesis and use of labelled nucleoside phosphoramidite building blocks
bearing a reporter group: biotinyl, dinitrophenyl, pyrenyl and dansyl. Nucleic Acids Res. 1989, 17,
7643–7651.
30. Levina, A.; Tabatadse, D.; Khalimskaya, L.; Prichodko, T.; Shishkin, G.; Alexandrova, L.; Zarytova, V.P.
Oligonucleotide derivatives bearing reactive and stabilizing groups attached to C5 of deoxyuridine.
Bioconjugate Chem. 1993, 4, 319–325.
31. Barwolff, D.; Langer, P. 2/-deoxy-5(hydroxymethy1)uridine and 2ꢁ-deoxy-5-formyluridine selective
bromination of the 5-methyl group of 5-methylpyrimidine nucleosides, in Nucleic Acid Chemistry, ed.
L.B. Townsend, R.S. Tipson, Wiley, New York, 1978, vol. 1, pp. 359–366.
32. Vasile´va, S.; Abramova, T.; Ivanova, T.; Shishkin, G.; Siln´ikov, V. Monomers for oligonucleotide
synthesis with linkers carrying reactive residues: II. The synthesis of phosphoamidites on the basis of
uridine and cytosine and containing a linker with methoxyoxalamide groups in position 2ꢁ. Russ. J.
Bioorg. Chem. 2004, 30, 234–241.
33. Abramova, T.; Vasile´va, S.; Ivanova, T.; Shishkin, G.; Siln´ikov, V. Monomers for oligonucleotide
synthesis with linkers carrying reactive residues: I. The synthesis of deoxynucleoside derivatives with
methoxyoxalamide groups in heterocyclic bases. Russ. J. Bioorg. Chem. 2004, 30, 224–233.