Journal of the American Chemical Society
COMMUNICATION
continuously stacked macrocycles. Thus, the columnar assembly
and hexagonal packing of 1b remain in the presence of Cs+Picꢀ,
suggesting that the metal ions are complexed within the
hydrophilic pore of the nanotubular stacks.
Ferguson, J. S.; Yamato, K.; Liu, R.; He, L.; Zeng, X. C.; Gong, B. Angew.
Chem., Int. Ed. 2009, 48, 3150.
(4) (a) Bunz, U. H. F.; Rubin, Y.; Tobe, Y. Chem. Soc. Rev. 1999,
28, 107. (b) Sessler, J. L.; Tvermoes, N. A.; Davis, J.; Anzenbacher, P.;
Jursikova, K.; Sato, W.; Seidel, D.; Lynch, V.; Black, C. B.; Try, A.;
Andrioletti, B.; Hemmi, G.; Mody, T. D.; Magda, D. J.; Kral, V. Pure
Appl. Chem. 1999, 71, 2009. (c) Grave, C.; Schluter, A. D. Eur. J. Org.
Chem. 2002, 2002, 3075. (d) Zhang, W.; Moore, J. S. Angew. Chem., Int.
Ed. 2006, 45, 4416. (e) MacLachlan, M. J. Pure Appl. Chem. 2006,
78, 873. (f) H€oger, S. Pure Appl. Chem. 2010, 82, 821.
(5) (a) Yamaguchi, Y.; Yoshida, Z.-I. Chem. Eur. J. 2003, 9, 5430. (b)
H€oger, S. Angew. Chem., Int. Ed. 2005, 44, 3806. (c) Xing, L. Y.; Ziener, U.;
Sutherland, T. C.; Cuccia, L. A. Chem. Commun. 2005, 5751. (d) Zhang, W.;
Moore, J. S. J. Am. Chem. Soc. 2005, 127, 11863. (e) Campbell, F.; Wilson,
A. J. Tetrahedron Lett. 2009, 50, 2236. (f) Qin, B.; Ren, C. L.; Ye, R. J.; Sun,
C.; Chiad, K.; Chen, X. Y.; Li, Zhao.; Xue, F.; Su, H. B.; Chass, G. A.; Zeng,
H. Q. J. Am. Chem. Soc. 2010, 132, 9564. (g) Frischmann, P. D.; Facey, G. A.;
Ghi, P. Y.; Gallant, A. J.; Bryce, D. L.; Lelj, F.; MacLachlan, M. J. J. Am. Chem.
Soc. 2010, 132, 3893.
(6) Reviews on columnar/tubular assemblies: (a) Bong, D. T.;
Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem., Int. Ed. 2001,
40, 988. (b) Block, M. A. B.; Kaiser, C.; Khan, A.; Hecht, S. Top. Curr.
Chem. 2005, 245, 89. (c) Keizer, H. M.; Sijbesma, R. P. Chem. Soc. Rev.
2005, 34, 226. (d) Pasini, D.; Ricci, M. Curr. Org. Syn. 2007, 4, 59.
(7) Examples of columnar/tubular assemblies: (a) Ghadiri, M. R.;
Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Nature
1993, 366, 324. (b) Seebach, D.; Matthews, J. L.; Meden, A.; Wessels, T.;
Baerlocher, C.; McCusker, L. B. Helv. Chim. Acta 1997, 80, 173. (c)
Gattuso, G.; Menzer, S.; Nepogodiev, S. A.; Stoddart, J. F.; Williams, D. J.
Angew. Chem., Int. Ed. 1997, 36, 1451. (d) Mindyuk, O. Y.; Stetzer, M. R.;
Heiney, P. A.; Nelson, J. C.; Moore, J. S. Adv. Mater. 1998, 10, 1363. (e)
Kim, Y.; Mayer, M. F.; Zimmerman, S. C. Angew. Chem., Int. Ed. 2003,
42, 1121. (f) Fenniri, H.; Deng, B. L.; Ribbe, A. E.; Hallenga, K.; Jacob, J.;
Thiyagarajan, P. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 6487. (g) Gallant,
A. J.; MacLachlan, M. J. Angew. Chem., Int. Ed. 2003, 42, 5307. (h)
Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.;
Peterca, M .; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.;
Hu, D. A.; Magonov, S. N.; Vinogradov, S. A. Nature 2004, 430, 764. (i)
Pisula, W.; Kastler, M.; Yang, C.; Enkelmann, V.; Mullen, K. Chem. Asian
J. 2007, 2, 51. (j) Yang, J.; Dewal, M. D.; Profeta, S.; Smith, M. D.; Li,
Y. Y.; Shimizu, L. S. J. Am. Chem. Soc. 2008, 130, 612. (k) Fischer, L.;
Decossas, M.; Briand, J. P.; Didierjean, C.; Guichard, G. Angew. Chem., Int.
Ed. 2009, 48, 1625. (l) Frischmann, P. D.; Guieu, S; Tabeshi, R.;
MacLachlan, M. J. J. Am. Chem. Soc. 2010, 132, 7668. (m) Ren, C. L.;
Maurizot, V.; Zhao, H. Q.; Shen, J.; Zhou, F.; Ong, W. Q.; Du, Z. Y.; Zhang,
K.; Su, H. B.; Zeng, H. Q. J. Am. Chem. Soc. 2011, 133, 13930. (n) Sato, K.;
Itoh, Y.; Aida, T. J. Am. Chem. Soc. 2011, 133, 13767. (o) Fritzsche, M.;
Bohle, A.; Dudenko, D.; Baumeister, U.; Sebastiani, D.; Richardt, G.; Spiess,
H. W.; Hansen, M. R.; Hoger, S. Angew. Chem., Int. Ed. 2011, 50, 3030.
(8) Helsel, A. J.; Brown, A. L.; Yamato, K.; Feng, W.; Yuan, L. H.;
Clements, A.; Harding, S. V.; Szabo, G.; Shao, Z. F.; Gong, B. J. Am.
Chem. Soc. 2008, 130, 15784.
In summary, oligoamide macrocycles undergo strong, direc-
tional assembly. In contrast to the stacking of typical aromatic
hydrocarbons, aggregation of these macrocycles is weakened in
polar media. The interplay of dipoleꢀdipole and πꢀπ stacking
leads to strong aggregation and the observed effect of solvent
polarity. These macrocycles readily form long fibers in the solid
state, in contrast to the fabrication of 1D assemblies of many disk-
like aromatics, which requires demanding conditions.16 XRD
data reveal well-defined, long nanotubes, which confirms the
highly directional stacking of these macrocycles. With their
persistent shape, non-deformable cavities, and high propensity
of aggregation, tubular assemblies of oligoamide macrocycles
provide a reliable supramolecular motif, based on which a variety
of organic nanotubes containing non-collapsible internal pores
can be created. The ability of 1b to accommodate metal ions
while maintaining the same nanotubular assembling and packing
order bodes well for creating new porous materials.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, ana-
b
lytical data, and microscopic images. This material is available
’ AUTHOR INFORMATION
Corresponding Author
Present Address
rKey Laboratory of Organo-pharmaceutical Chemistry, Gannan
Normal University, Ganzhou 341000, P.R. China
’ ACKNOWLEDGMENT
This work is supported by the National Natural Science Founda-
tion of China (20774059, 21172158), the Doctoral Program of the
Ministry of Education of China (20090181110047), and the
U.S. National Science Foundation (CBET-1036171 and CBET-
1066947). Analytical & Testing Center of Sichuan University
(Dr. Pengchi Deng) is acknowledged for NMR experiments.
’ REFERENCES
(1) Reviews: (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (b)
Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev.
2001, 101, 3893. (c) Gong, B. Chem. Eur. J. 2001, 7, 4336. (d) Huc, I.
Eur. J .Org. Chem. 2004, 17. (e) Li, Z. T.; Hou, J. L.; Li, C.; Yi, H. P. Chem.
Asian J. 2006, 1, 766. (f) Goodman, C. M.; Choi, S.; Shandler, S.;
DeGrado, W. F. Nature Chem. Biol. 2007, 3, 252.
(2) (a) Gong, B. Acc. Chem. Res. 2008, 41, 1376. (b) Gong, B.; Zeng,
H. Q.; Zhu, J.; Yuan, L. H.; Han, Y. H.; Cheng, S. Z.; Furukawa, M.;
Parra, R. D.; Kovalevsky, A. Y.; Mills, J. L.; Skrzypczak-Jankun, E.;
Martinovic, S.; Smith, R. D.; Zheng, C.; Szyperski, T.; Zeng, X. C. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 11583. (c) Yuan, L. H.; Zeng, H. Q.;
Yamato, K.; Sanford, A. R.; Feng, W.; Atreya, H. S.; Sukumaran, D. K.;
Szyperski, T.; Gong, B. J. Am. Chem. Soc. 2004, 126, 16528.
(9) (a) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science
1997, 277, 1793. (b) Brunsveld, L.; Zhang, H.; Glasbeek, M.; Vekemans, J.
A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 6175.
(10) Please see Supporting Information for details.
(11) Parra, R. D.; Zeng, H. Q.; Zhu, J.; Zheng, C.; Zeng, X. C.; Gong,
B. Chem. Eur. J. 2001, 7, 4352.
(12) Zhang, Y. F.; Yamato, K.; Zhong, K.; Zhu, J.; Deng, J. G.; Gong,
B. Org. Lett. 2008, 10, 4339.
(13) Norberg, J.; Nilsson, L. Biophys. J. 1998, 74, 394.
(14) Prasad, S. K.; Rao, D. S. S.; Chandrasekhar, S.; Kumar, S. Mol.
Cryst. Liq. Cryst. 2003, 396, 121.
(15) Cullity, B. D.; Stock, S. R. Elements of X-Ray Diffraction, 3rd ed.;
Prentice-Hall: Englewood Cliffs, NJ, 2001.
(3) (a) Yuan, L. H.; Feng, W.; Yamato, K.; Sanford, A. R.; Xu, D. G.;
Guo, H.; Gong, B. J. Am. Chem. Soc. 2004, 126, 11120. (b) Feng, W.;
Yamato, K.; Yang, L. Q.; Ferguson, J.; Zhong, L. J.; Zou, S. L.; Yuan,
L. H.; Zeng, X. C.; Gong, B. J. Am. Chem. Soc. 2009, 131, 2629. (c)
(16) Zang, L.; Che, Y. K.; Moore, J. S. Acc. Chem. Res. 2008, 41,
1596.
18593
dx.doi.org/10.1021/ja208548b |J. Am. Chem. Soc. 2011, 133, 18590–18593