S.F. Ahmed et al. / Spectrochimica Acta Part A 83 (2011) 17–27
27
which leads to a higher single bond character for C(9)–O(13)
[28].
(4) In [Cu2(H2OPAH)Cl3(H2O)]H2O, [Ni2(HOPAH)Cl2(H2O)2]H2O
and [(UO2)2(HOPAH)(OAc)2(H2O)2] complexes, C(9)–N(10)
(5) The bond angles of the hydrazone moiety of H3OPAH are altered
somewhat upon coordination but the angles around the metal
undergo appreciable variations upon changing the metal
[3] H.J.C. Bezerra-Netto, D.I. Lacerda, A.L.P. Miranda, H.M. Alves, E.J. Barreiro, C.A.M.
Fraga, Bioorg. Med. Chem. 14 (2006) 7924–7935.
[4] Y.P. Kitaev, B.I. Buzykin, T.V. Troepolskaya, Russ. Chem. 39 (1970) 441–456.
[5] O. Pouralimardan, A.C. Chamayou, C. Janiak, H. Hosseini-Monfared, Inorg. Chim.
Acta 360 (2007) 1599–1608.
[6] C. Basu, S. Chowdhury, R. Banerjee, H.S. Evans, S. Mukherjee, Polyhedron 26
(2007) 3617–3624.
[7] M. Bakir, O. Green, W.H. Mulder, J. Mol. Struct. 873 (2008) 17–28.
[8] J.L. Buss, J. Neuzil, P. Ponka, Biochem. Soc. Trans. 30 (2002) 755–757.
[9] L.A. Cescon, A.R. Day, J. Org. Chem. 27 (1962) 581–586.
[10] HyperChem version 8.0, Hypercube, Inc.
[11] N.L. Alpert, W.E. Keiser, H. Szmanski, A Theory and Practice of Infrared Spec-
troscopy, Plenum Press, New York, 1970.
[12] O.A. El-Gammal, Spectrochim. Acta A 75 (2010) 533–542.
[13] P.B. Sreeja, M.R.P. Kurup, A. Kishore, C. Jasmin, Polyhedron 23 (2004) 575–581.
[14] K.A. Ketcham, I. Garcia, J.K. Swearingen, A.K. El-Sawaf, E. Bermejo, A. Castineiras,
D.X. West, Polyhedron 21 (2002) 859–865.
[15] U. El-Ayaan, I.M. Kenawy, Y.G. Abu El-Reash, J. Mol. Struct. 871 (2007) 14–23.
[16] N.S. Biradar, B.R. Patil, V.H. Kulkarni, J. Inorg. Nucl. Chem. 37 (1975) 1901–1904.
[17] U. El-Ayaan, G.A. EL-Reash, I.M. Kenawy, Synth. React. Inorg. Met.-Org. Chem.
33 (2003) 327–342.
[18] D.K. Rastogi, S.K. Sahni, V.B. Rana, S.K. Dua, Transition Met. Chem. 3 (1978)
56–60.
[19] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Com-
pounds, Wiley, New York, 1986, p. 231.
[20] K. Chanda, P.K. Sharma, B.S. Gray, R.P. Singh, J. Inorg. Nucl. Chem. 42 (1980)
187–193.
[21] F. Quilés, Vib. Spectrosc. 18 (1998) 61–75.
[22] S.P. McGlynn, J.K. Smith, W.C. Neely, J. Chem. Phys. 35 (1961) 105–116.
[23] L.H. Jones, Spectrochim. Acta 15 (1959) 409–411.
[24] T.H. Rakha, N. Nawar, G.M. Abu Reash, Synth. React. Inorg. Met.-Org. Chem 26
(1996) 1705–1718.
C(9)–C(8)–O(12),
N(7)–C(8)–C(9),
N(10)–C(9)–O(13),
O(12)–C(8)–N(7) and N(10)–C(9)–C(8) angles which are
reduced or increased on complex formation as a consequence
of bonding [12].
(6) The bond angles in complexes namely, [Cd(H3OPAH)Cl2],
[Zn(H3OPAH)(OAc)2] and [Hg(H3OPAH)Cl2]H2O are quite
near to a tetrahedral geometry predicting sp3 hybridiza-
tion. On the other hand, [Cu2(H2OPAH)Cl3(H2O)]H2O and
[Ni2(HOPAH)Cl2(H2O)2]H2O complex afforded
planar geometry with dsp2 hybridization and quite near
to
tetrahedral geometry predicting sp3 hybridization.
a
square
a
Also, [Mn(H3OPAH)2Cl2], [Co2(H2OPAH)2Cl2(H2O)4] and
[(UO2)2(HOPAH)(OAc)2(H2O)2] complexes afforded octahedral
geometry.
ing electron ability is weaker. On contrary, the higher HOMO
energy implies that the molecule is a good electron donor.
electron as in Table 9 [49].
[25] J.R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Com-
pounds, Plenum Press, New York, 1971.
[26] J.R. Ferraro, W.R. Walkers, Inorg. Chem. 4 (1965) 1382–1386.
[27] D.X. West, A.K. El-Sawaf, G.A. Bain, Transition Met. Chem. 23 (1998) 1–6.
[28] A.A.R. Despaigne, J.G. da Silva, A.C.M. do Carmo, O.E. Piro, E.E. Castellano, H.
Beraldo, J. Mol. Struct. 920 (2009) 97–102.
[29] R.S. Joseyphus, C.J. Dhanaraj, M.S. Nair, Transition Met. Chem. 31 (2006)
699–702.
[30] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1984.
4. Conclusion
[31] A.A. El-Asmy, T.Y. Al-Ansi, R.R. Amin, M. Mounir, Polyhedron
2029–2034.
[32] F.A. El-Saied, A.A. El-Asmy, W. Kaminstry, D.X. West, Transition Met. Chem. 28
(2003) 954–960.
[33] M. Mohan, M. Kumar, Transition Met. Chem. 10 (1985) 255–258.
[34] U. El-Ayaan, M.M. Youssef, S. Al-Shihry, J. Mol. Struct. 936 (2009) 213–219.
[35] M.L. Miller, S.A. Ibrahim, M.L. Golden, M.Y. Daresboury, Inorg. Chem. 42 (2003)
2999–3007.
[36] A. Diaz, A. Fragosa, R. Cao, V. Verez, J. Carbohydr. Chem. 17 (1998) 293–303.
[37] O. Khan, T. Mallah, J. Gouteron, S. Jeanin, Y. Jeanin, J. Chem. Soc. Dalton trans.
(1989) 1117–1126.
9 (1990)
A new series of complexes, Structures 2–9, were prepared from
the novel ligand Nꢀ-(1-(4-hydroxyphenyl) ethylidene)-2-oxo-2-
(phenylamino) acetohydrazide (H3OPAH). Geometry optimization
and conformational analysis have been performed and the per-
fect agreement with spectral studies allows for suggesting the
exact structure of all studies complexes. The stability of complexes
was explained and kinetic parameters (Ea, A, ꢀH, ꢀS and ꢀG) of
all the thermal decomposition stages have been evaluated using
Coats–Redfern and Horowitz–Metzger methods.
[38] B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143–207.
[39] A.W. Coats, J.P. Redfern, Nature 20 (1964) 68–69.
[40] H.H. Horowitz, G. Metzger, Anal. Chem. 35 (1963) 1464–1468.
[41] A. Broido, J. Polym. Sci. Part A-2 7 (1969) 1761–1773.
Supplementary data
[42] A.A. Frost, R.G. Pearson, Kinetics and Mechanisms, Wiley, New York, 1961.
[43] T. Taakeyama, F.X. Quinn, Thermal Analysis Fundamentals and Applications to
Polymer Science, John Wiley and Sons, Chichester, 1994.
[44] P.B. Maravalli, T.R. Goudar, Thermochim. Acta 325 (1999) 35–41.
[45] K.K.M. Yusuff, R. Sreekala, Thermochim. Acta 159 (1990) 357–368.
[46] S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochim. Acta 414 (2004) 105–113.
[47] H.M. Irving, H.S. Rossotti, J. Chem. Soc. (1954) 2904–2910.
[48] A.A.R. Despaigne, J.G. da Silva, A.C.M. do Carmo, F. Sives, O.E. Piro, E.E. Castellano,
H. Beraldo, Polyhedron 28 (2009) 3797–3803.
Supplementary data associated with this article can be found, in
References
[1] S. Rollas, S.G. Küc¸ ükgüzel, Molecules 12 (2007) 1910–1939.
[2] P. Vicini, M. Incerti, I.A. Doytchinova, P. La Colla, B. Busonera, R. Loddo, Eur. J.
Med. Chem. 41 (2006) 624–632.
[49] S. Sagdinc, B. Koksoy, F. Kandemirli, S.H. Bayari, J. Mol. Struct. 917 (2009) 63–70.