Heck-type alkenylation reactions, only palladium and
rhodium complexes have been widely used until now. On
the other hand, the use of a less-expensive ruthenium com-
plex as a catalyst has not been explored in detail for the
oxidative alkenylation at the ortho position of the aromatic
CꢀH bond.9 While the CꢀH bond activation reaction in
the presence of strong coordinating groups is well docu-
mented and facile, activation in the presence of weak-
coordinating groups such as aldehydes, esters, and ketones
is still a challenging task. In 1993, Murai’s group reported
one of the first papers in the ruthenium-catalyzed chelation-
assisted CꢀH bond functionalization of aromatic
ketones with olefins.10a,b However, in the reaction only
alkylated products were observed. Later, several other re-
search groups also reported an addition reaction of aro-
matic ketones with alkenes by using the different ruthenium
complexes.10cꢀi In all these reactions only alkylated pro-
ducts were observed. Very recently, Ackermann’s group has
reported a ruthenium-catalyzed CꢀH bond activation reac-
tion in which aromatic acids undergo oxidative cyclization
with alkenes to give the cyclic phthalides.11 Herein, we wish
to report a ruthenium-catalyzed reaction of aryl ketones
with olefins, giving ortho-alkenylated aryl ketones through a
CꢀH bond activation reaction in a highly regio- and
stereoselective fashion.12,13
Scheme 1
The reaction of 4-bromoacetophenone (1a) with n-butyl
acrylate (2a) in the presence of [{RuCl2(p-cymene)}2]
(2 mol %), AgSbF6 (10 mol %), and Cu(OAc)2 H2O
3
(25 mol %) in 1,2-dichloroethane (DCE) at 110 °C for
12h provided a Heck-type product 3ain88% isolatedyield
with excellent E-stereoselectivity (Scheme 1). It is impor-
tant to note that, in most of the rhodium-catalyzed CꢀH
activation reactions, a stoichiometric amount of oxidant
has been used.8 However, only 25 mol % of oxidant is used
in the present reaction. It is also whorthwhile to mention
that only the catalytic amount of oxidants (Ag salts or Cu
salts or air) were used in the palladium-catalyzed alkenyla-
tion reactions.1d Control experiments revealed that no 3a
was obtained in the absence of a ruthenium catalyst, silver
salt, or copper salt (for the detailed optimization studies,
see Supporting Information (SI)).
(6) (a) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010,
132, 3680. (b) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2009,
131, 9886. (c) Lu, Y.; Wang, D.-H.; Engle, K.-M.; Yu, J.-Q. J. Am.
Chem. Soc. 2010, 132, 5916. (d) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.;
Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460. (e) Wang, D.-
H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315. (f) Li, J.-J.;
Mei, T.- S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452. (g) Engle,
K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2010, 49, 6169. (h)
Engle, K. M.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132,
14137. (i) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009,
131, 5072. (j) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano,
S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510. (k)
Wang, D.-H.; Hao, X.-S.; Wu, D.-F.; J.-Q. Org. Lett. 2006, 8, 3389. (l)
Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q J. Am. Chem. Soc. 2010, 132,
12203. (m) Li, Y.; Leow, D.; Wang, X.; Engel, k. M.; Yu, J.-Q. Chem.
Sci. 2011, 2, 967.
Under the optimized reaction conditions, several substi-
tuted acetophenones 1bꢀm reacted efficiently with n-butyl
acrylate (2a) to give the corresponding alkene derivatives
3bꢀm in good to excellent yields with complete E-stereo-
selectivity (Table 1). Thus, acetophenone (1b), 4-fluoroace-
tophenone (1c), and 4-iodoacetophenone (1d) gave the Heck-
type products 3bꢀ3d in 86%, 89%, and 83% yields, respec-
tively (entries 1ꢀ3). It is interesting to note that the catalytic
reaction is compatible with very sensitive halogen groups
such as I and Br (Table 1, entry 3 and Scheme 1). Similarly,
4-methylacetophenone (1e) and 4-methoxyacetophenone
(7) (a) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.;
Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem.
Soc. 2002, 124, 1586. (b) Amatore, C.; Cammoun, C.; Jutand, A. Adv.
Synth. Catal. 2007, 349, 292. (c) Wang, J.-R.; Yang, C.-T.; Liu, L.; Guo,
Q.-X. Tetrahedron Lett. 2007, 48, 5449. (d) Nishikata, T.; Lipshutz,
B. H. Org. Lett. 2010, 12, 1972.
(8) (a) Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2009, 74, 7094. (b) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9,
1407. (c) Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett.
2010, 12, 2068. (d) Fukutani, T.; Umeda, N.; Hirano, K.; Satoh, T.;
Miura, M. Chem. Commun. 2009, 5141. (e) Guimond, N.; Fagnou, K.
J. Am. Chem. Soc. 2009, 131, 12050. (f) Guimond, N.; Gouliaras, C.;
Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (g) Stuart, D. R.;
Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132,
18326. (h) Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc.
2010, 132, 9585. (i) Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010,
132, 9982. (j) Patureau, F. W.; Besset, T.; Glorius, F. Angew. Chem., Int.
Ed. 2011, 50, 1064. (k) Hyster, T. K.; Rovis, T. J. Am. Chem. Soc. 2010,
132, 10565. (l) Wang, F.; Song, G.; Li, X. Org. Lett. 2010, 12, 5430. (m)
Gong, T.-J.; Xiao, B.; Liu, Z.-J.; Wan, J.; Xu, J.; Luo, D.-F.; Fu, Y.; Liu,
L. Org. Lett. 2011, 13, 3235. (n) Park, S.; Kim, J. Y.; Chang, S. Org. Lett.
2011, 13, 2372. (o) Feng, C.; Loh, T.-P. Chem. Commun. 2011, 10458.
(9) The cost of 1 g of [{RuCl2(p-cymene)}2] is $36 from Alfa-Asear,
whereas 1 g of [{Cp*RhCl2}2] is $702.
(10) Alkylation by addition reaction to alkenes: (a) Murai, S.;
Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.;
Chatani, N. Nature 1993, 366, 529. (b) Chatani, N.; Asaumi, T.; Ikeda,
T.; Yorimitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc.
2000, 122, 12882. (c) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai,
S. J. Am. Chem. Soc. 2003, 125, 1698. (d) Kakiuchi, F.; Matsuura, Y.;
Kan, S.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936. (e) Martinez, R.;
Chevalier, R.; Darses, S.; Genet, J.-P. Angew. Chem., Int. Ed. 2006, 45,
8232. (f) Martinez, R.; Genet, J.-P.; Darses, S. Chem. Commun. 2008,
3855. (g) Simon, M.-O.; Genet, J.-P.; Darses, S. Org. Lett. 2010, 12,
3038. (h) Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Lett.
2010, 12, 3856. (i) Kakiuchi, F.; Kochi, T.; Mizushima, E.; Murai, S. J.
Am. Chem. Soc. 2010, 132, 17741.
(11) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 3287.
(12) Alkenylation by addition reaction to alkynes: (a) Clegg, N. J.;
Paruthiyil, S.; Leitman, D. C.; Kakiuchi, F.; Yamamoto, Y.; Chatani,
N.; Murai, S. Chem. Lett. 1995, 681. (b) Kakiuchi, F.; Uetsuhara, T.;
Tanaka, Y.; Chatani, N.; Murai, S. J. Mol. Catal. A: Chem 2002, 182–
511. (c) Harris, P. W. R.; Rickard, C. E. F.; Woodgate, P. D.
J. Organomet. Chem. 1999, 589, 168. (d) Mori, M.; Kozawa, Y.; Nishida,
M.; Kanamaru, M.; Onozuka, K.; Takimoto, M. Org. Lett. 2000, 2,
3245. (e) Neisius, N. M.; Plietker, B. Angew. Chem., Int. Ed. 2009, 48,
5752. Rhodium-catalyzed reaction: (f) Shibata, Y.; Hirano, M.; Tana-
ka, K. Org. Lett. 2008, 10, 2829. (g) Shibata, Y.; Otake, Y.; Hirano, M.;
Tanaka, K. Org. Lett. 2009, 11, 689.
(13) Recent examples of acetophenone directed cyclization and
coupling reactions: Rhodium-catalyzed reaction: (a) Tanaka, K.; Otake,
Y.; Wada, A.; Noguchi, K.; Hirano, M. Org. Lett. 2007, 9, 2203. (b)
Muralirajan, K.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem., Int.
Ed. 2011, 50, 4169. (c) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F.
J. Am. Chem. Soc. 2011, 133, 2154. (d) Tsuchikama, K.; Kasagawa, M.;
Hashimoto, Y.-K.; Endo, K.; Shibata, T. J. Organomet. Chem. 2008,
693, 3939. Iridium-catalyzed reaction: (e) Tsuchikama, K.; Kasagawa,
M.; Endo, K.; Shibata, T. Synlett 2010,97. (f) Gandeepan, P.; Parthasarathy,
K.; Cheng, C.-H. J. Am. Chem. Soc. 2010, 132, 8569.
Org. Lett., Vol. 13, No. 23, 2011
6145