S. R. Kirk et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6417–6419
6419
Table 2
Dissociation constants for aromatic-substituted compound 2 derivatives
Compounda
R1
R2
KD(+50)
(l
M)b
KD(ꢀ50)
(l
M)b
n
rp
rW (Å)
c
d
2
H
H
H
H
H
H
H
H
Cl
0.80 0.50
8.0 5.8
1.72 1.38
12.6 7.3
3.0 3.4
1.41 0.84
0.38 0.16
0.75 0.86
0.24 0.10
0.22 0.13
10
4
5
5
4
5
4
6
0.00
0.78
ꢀ0.27
ꢀ0.17
0.23
0.06
0.23
0.23
1.20
2.59
1.56
1.72
1.75
1.47
1.85
1.75
8a
8b
8c
8d
8e
8f
NO2
OMe
Me
Cl
F
Br
1.25 1.23
0.50 0.42
0.14 0.04
0.20 0.10
0.14 0.03
0.10 0.09
8g
H
a
Depicted as the predominant protonation state at pH 7.6.
KD(+50) and KD(ꢀ50) are the apparent dissociation constants at +50 and ꢀ50 mV obtained from fits of the equation IþB=I ¼ KD=ðKD þ ½BꢁÞ, where the left side is current in
b
ꢀB
the presence of blocker divided by current in the absence of blocker, and [B] is blocker concentration.
c
Hammett sigma constant at the para-position, which accounts for the net inductive and resonance effects. Positive values denote an electron-withdrawing substituent,
and negative values an electron-donating substituent.
d
Van der Waals radius; radius of a sphere that encloses the substituent.
4. Bowes, C.; Li, T.; Danciger, M.; Baxter, L. C.; Applebury, M. L.; Farber, D. B.
Nature 1990, 347, 677.
affinity in the subnanomolar range; however its multiply charged
5. Pierce, E. A. Bioessays 2001, 23, 605.
the tertiary amine of tetracaine. APPA-tetracaine has an apparent
head group renders it membrane-impermeant.11 Other previously
6. Pacione, L. R.; Szego, M. J.; Ikeda, S.; Nishina, P. M.; McInnes, R. R. Annu. Rev.
Neurosci. 2003, 26, 657.
7. Olshevskaya, E. V.; Calvert, P. D.; Woodruff, M. L.; Peshenko, I. V.; Savchenko, A.
tested tetracaine derivatives with hydrophobic moieties have high
apparent affinities for CNG channels, but not in the submicromolar
B.; Makino, C. L.; Ho, Y. S.; Fain, G. L.; Dizhoor, A. M. J. Neurosci. 2004, 24, 6078.
range. The apparent KD values we report here for compounds 8d–g
fall second only to APPA-tetracaine. Block by APPA-tetracaine
shows specificity for CNG channels; the apparent KD for sodium
channels being approximately 100-fold higher.11 The specificities
of compounds 8d–g for CNG channels and different CNG channel
subtypes remain to be explored. We are particularly interested in
synthesizing these high-affinity derivatives in the more hydrolyti-
cally stable thioamide forms.14 We have previously demonstrated
that substituting a thioamide for the ester linkage has a negligible
effect on potency of CNG channel block for octyl-tail derivatives.
Such compounds may prove to be highly effective pharmacological
tools for CNG channel research.
8. Nishiguchi, K. M.; Sokal, I.; Yang, L.; Roychowdhury, N.; Palczewski, K.; Berson,
E. L.; Dryja, T. P.; Baehr, W. Invest. Ophthalmol. Vis. Sci. 2004, 45, 3863.
9. Trifunovic, D.; Dengler, K.; Michalakis, S.; Zrenner, E.; Wissinger, B.; Paquet-
Durand, F. J. Comp. Neurol. 2010, 518, 3604.
10. Paquet-Durand, F.; Beck, S.; Michalakis, S.; Goldmann, T.; Huber, G.;
Muhlfriedel, R.; Trifunovic, D.; Fischer, M. D.; Fahl, E.; Duetsch, G.; Becirovic,
E.; Wolfrum, U.; van Veen, T.; Biel, M.; Tanimoto, N.; Seeliger, M. W. Hum. Mol.
Genet. 2011, 20, 941.
11. Ghatpande, A. S.; Uma, R.; Karpen, J. W. Biochemistry 2003, 42, 265.
12. Strassmaier, T.; Uma, R.; Ghatpande, A. S.; Bandyopadhyay, T.; Schaffer, M.;
Witte, J.; McDougal, P. G.; Brown, R. L.; Karpen, J. W. J. Med. Chem. 2005, 48,
5805.
13. Strassmaier, T.; Kirk, S. R.; Banerji, T.; Karpen, J. W. Bioorg. Med. Chem. Lett.
2008, 18, 645.
14. Andrade, A. L.; Melich, K.; Whatley, G. G.; Kirk, S. R.; Karpen, J. W. J. Med. Chem.
2011, 54, 4904.
15. Quandt, F. N.; Nicol, G. D.; Schnetkamp, P. P. Neuroscience 1991, 42, 629.
16. Schnetkamp, P. P. Biochemistry 1987, 26, 3249.
17. Schnetkamp, P. P. J. Gen. Physiol. 1990, 96, 517.
Acknowledgments
18. Sunami, A.; Dudley, S. C., Jr.; Fozzard, H. A. Proc. Natl. Acad. Sci. U.S.A. 1997, 94,
14126.
19. Ragsdale, D. S.; McPhee, J. C.; Scheuer, T.; Catterall, W. A. Science 1994, 265,
1724.
20. Ragsdale, D. S.; McPhee, J. C.; Scheuer, T.; Catterall, W. A. Proc. Natl. Acad. Sci.
U.S.A. 1996, 93, 9270.
This work was supported by NIH Grants EY009275 and
MH071625 (J.W.K.). and NSF Grant MRI0821781 (S.R.K.). We thank
the Bioanalytical Shared Resource at OHSU for mass spectrometry
data, and Tapasree Banerji for technical assistance.
21. Fodor, A. A.; Black, K. D.; Zagotta, W. N. J. Gen. Physiol. 1997, 110, 591.
22. Catterall, W. A. Novartis Found. Symp. 2002, 241, 206.
23. Nau, C.; Wang, G. K. J. Membr. Biol. 2004, 201, 1.
24. Guo, D.; Lu, Z. J. Gen. Physiol. 2000, 115, 783.
25. Li, H. L.; Galue, A.; Meadows, L.; Ragsdale, D. S. Mol. Pharmacol. 1999, 55,
134.
26. Heginbotham, L.; MacKinnon, R. Neuron 1992, 8, 483.
27. Karlin, A.; Akabas, M. H. Neuron 1995, 15, 1231.
28. Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I.
Science 1991, 253, 872.
Supplementary data
Supplementary data (synthetic chemistry procedures and 1H
NMR, 13C NMR, and ESI-MS data of compounds 6a–d and 8a–g)
associated with this article can be found, in the online version, at
29. Dougherty, D. A. Science 1996, 271, 163.
References and notes
30. Skinner, P. J.; Cherrier, M. C.; Webb, P. J.; Sage, C. R.; Dang, H. T.; Pride, C. C.;
Chen, R.; Tamura, S. Y.; Richman, J. G.; Connolly, D. T.; Semple, G. Bioorg. Med.
Chem. Lett. 2007, 17, 6619.
31. Lazar, C.; Kluczyk, A.; Kiyota, T.; Konishi, Y. J. Med. Chem. 2004, 47, 6973.
32. Strassmaier, T.; Karpen, J. W. J. Med. Chem. 2007, 50, 4186.
1. Fesenko, E. E.; Kolesnikov, S. S.; Lyubarsky, A. L. Nature 1985, 313, 310.
2. Nakamura, T.; Gold, G. H. Nature 1987, 325, 442.
3. Farber, D. B.; Lolley, R. N. J. Neurochem. 1977, 28, 1089.