[3 þ 2] cycloaddition reactions.3 In contrast, the direct
catalytic asymmetric construction of the spirocyclopenta-
neoxindole scaffold has remained an important challenge.
The 3-spirocyclopentane-2-oxindoles represent an im-
portant class of substructures that are widely encountered
in a number of biologically active natural alkaloids4 (Figure1)
and drug candidates.5 However, the catalytic enantioselec-
tive synthesis of these molecules remain a daunting task.
Generally, their asymmetric syntheses rely on chiral sub-
strate-controlled methods.4bꢀd To the best of our knowl-
edge, so far there are only two general reports concerning
the catalytic enantioselective construction of spirocyclo-
pentaneoxindole scaffolds. Trost and co-workers reported
an elegant Pd-catalyzed asymmetric [3 þ 2] cycloaddition
of methyleneindolinones for the synthesis of spiro-
cyclopentaneoxindoles.6 During the course of our cur-
rent work, Barbas and co-workers represented the only
example of organocatalytic highly enantioselective
synthesis of spirocyclopentaneoxindoles through cas-
cade Michaelꢀaldol reaction of activated methyleneindo-
linones.7 This impressive cascade process led to bispiro-
cyclic oxindole derivatives containing three quaternary
stereocenters.
organocatalytic asymmetric method to construct spirocy-
clopentaneoxindole scaffold with novel structural and
stereochemical diversity. We envisioned that the densely
substituted 3-spirocyclopentane-2-oxindole skeletons 3
could be constructed through organocatalytic cascade
double Michael addition reactions8 between rationally
designed new type of Michael donorꢀacceptor synthons
2, bifunctional oxindoles,9 and nitroolefins 310 (Scheme 1).
The bifunctional oxindoles 2 might be achieved through
Ru-catalyzed cross-metathesis of easily available 3-allylox-
indoles 1.
Recently, we have developed a new class of bifunctional
thioureacatalystsbearingcentraland axial chiralelements,
which showed good performance in the catalytic asym-
metric addition of 1,3-dicarbonyl compounds to nitro-
olefins.11 Interestingly, we have found that this class of
bifunctional thiourea catalysts could highly effectively
catalyze designed cascade double-Michael addition with
excellent diastereo- and enantioselectivity. As part of our
interest in developing new catalysts for novel catalytic
asymmetric reactions,12 herein we report new results in
the catalytic asymmetric construction of spirocyclopenta-
neoxindole scaffold.
Scheme 1. Strategy for Catalytic Asymmetric Construction of
Spirocyclopentaneoxindole Scaffold
We initiated our studies by evaluating the model
reaction involving a Ru-catalyzed cross-metathesis of
Figure 1. Representative natural products containing the spiro-
cyclopentaneoxindole scaffold.
(9) For a recent review on catalytic asymmetric routes to 3,3-
disubstituted oxindoles, see: (a) Zhou, F.; Liu, Y.; Zhou, J. Adv. Synth.
Catal. 2010, 352, 1381. For selected examples of asymmetric reactions
with 3-prochiral oxindoles, see: (b) Duan, S.; An, J.; Chen, J.; Xiao, W.
Org. Lett. 2011, 13, 2290. (c) Bui, T.; Syed, S.; Barbas, C. F., III. J. Am.
Chem. Soc. 2009, 131, 8758. (d) He, R.; Shirakawa, S.; Maruoka, K.
J. Am. Chem. Soc. 2009, 131, 16620. (e) Kato, Y.; Furutachi, M.; Chen,
Z.; Mitsunuma, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc.
2009, 131, 9168. (f) Li, X.; Zhang, B.; Xi, Z.; Luo, S.; Cheng, J. Adv.
Synth. Catal. 2010, 352, 416. (g) Liu, X.; Wu, Z.; Du, X.; Zhang, X.;
Yuan, W. J. Org. Chem. 2011, 76, 4008. (h) Ding, M.; Zhou, F.; Qian, Z.;
Zhou, J. Org. Biomol. Chem. 2010, 8, 2912. (i) Galzerano, P.; Bencivenni,
G.; Pesciaioli, F.; Mazzanti, A.; Giannichi, B.; Sambri, L.; Bartoli, G.;
Melchiorre, P. Chem.;Eur. J. 2009, 15, 7846. (j) Zhu, Q.; Lu, Y. Angew.
Chem., Int. Ed. 2010, 49, 7753. (k) Liao, Y.; Liu, X.; Wu, Z.; Cun, L.;
Zhang, X.; Yuan, W. Org. Lett. 2010, 12, 2896. (l) Shen, K.; Liu, X.;
Wang, W.; Wang, G.; Cao, W.; Li, W.; Hu, X.; Lin, L.; Feng, X. Chem.
Sci. 2010, 1, 590. (m) Trost, B. M.; Zhang, Y. Chem.;Eur. J. 2010, 16,
296. (n) Qian, Z.; Zhou, F.; Du, T.; Wang, B.; Ding, M.; Zhao, X.; Zhou,
J. Chem. Commun. 2009, 6753.
(10) For a recent review, see: Roca-Lopez, D.; Sadaba, D.; Delso, I.;
Herrera, R. P.; Tejero, T.; Merino, P. Tetrahedron: Asymmetry 2010, 21,
2561.
(11) Peng, F.; Shao, Z.; Fan, B.; Song, H.; Li, G.; Zhang, H. J. Org.
Chem. 2008, 73, 5202.
(12) (a) Fan, B.; Li, X.; Peng, F.; Zhang, H.; Chan, A. S. C.; Shao, Z.
Org. Lett. 2010, 12, 304. (b) Peng, F.; Shao, Z; Pu, X.; Zhang, H. Adv.
Synth. Catal. 2008, 350, 2199.
In view of their biological and pharmacological poten-
tials as well as the challenges associated with their catalytic
asymmetric syntheses, the development of a new strategy
for the direct catalytic asymmetric synthesis of structurally
diverse spirocyclopentaneoxindoles is highly desirable. In
this context, we were intrigued in the development a new
(6) Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc.
2007, 129, 12396.
(7) Tan, B.; Candeias, N. R.; Barbas, C. F., III. Nat. Chem. 2011, 3,
473. Also see:Zhang, S.; Xie, H.; Zhu, J.; Li, H.; Zhang, X.; Li, J.; Wang,
W. Nat. Commun. 2011, 2, 211.
(8) For recent examples of organocatalytic asymmetric cascade
double Michael addition, see: (a) Wang, X.; An, J.; Zhang, X.; Tan,
F.; Chen, J.; Xiao, W. Org. Lett. 2011, 13, 808. (b) Wang, X.; Hua, Q.;
Cheng, Y.; An, X.; Yang, Q.; Chen, J.; Xiao, W. Angew. Chem., Int. Ed.
2010, 49, 8379. (c) Wang, X.; Chen, J.; Cao, Y.; Cheng, H.; Xiao, W. Org.
Lett. 2010, 12, 1140. (d) Zhang, X.; Zhang, S.; Wang, W. Angew. Chem.,
Int. Ed. 2010, 49, 1481. (e) Wang, J.; Xie, H.; Li, H.; Zu, L.; Wang, W.
Angew. Chem., Int. Ed. 2008, 47, 4177. (f) Tan, B.; Shi, Z.; Chua, P.;
Zhong, G. Org. Lett. 2008, 10, 3425. (g) Li, H.; Zu, L.; Xie, H.; Wang, J.;
Jiang, W.; Wang, W. Angew. Chem., Int. Ed. 2007, 46, 3732. (h) Li, H.;
Zu, L.; Xie, H.; Wang, J.; Jiang, W.; Wang, W. Org. Lett. 2007, 9, 1833.
Org. Lett., Vol. 13, No. 23, 2011
6201