General procedure for the synthesis of the complexes
Notes and references
The porphyrin (50 mg) was suspended in CHCl3 (5 ml), and neat
dpap (5 eq.) was added. The solution was stirred at room
temperature under an Ar atmosphere for 15 min., and the solvent
was removed on a rotary evaporator. The residue was re-dissolved
in 5 ml CHCl3, stirred at room temperature for 10 min, then the
solvent removed in vacuo. The orange solid was dissolved in a
minimum amount of hot CH2Cl2 (ca 2 ml), and 10 ml MeOH
were carefully layered over the solution. After standing overnight,
orange/bronze coloured crystals were collected on a sintered
funnel, washed with MeOH and dried in vacuo. Yields are in the
range of 90 to 98%. Crystals suitable for XRD analysis were
grown from a saturated CHCl3 solution layered with MeOH.
1 C. M. Che and J. S. Huang, Chem. Commun., 2009, 3996–4015.
2 C. M. Che, J. L. Zhan, R. Zhang, J. S. Huang, T. S. Lai, W. M.
Tsui, X. G. Zhou, Z. Y. Zhou, N. Y. Zhu and C. K. Chang,
Chem.–Eur. J., 2005, 11, 7040–7053.
3 G. Jiang, J. Chen, H.-Y. Thu, J.-S. Huang, N. Zhu and C.-M. Che,
Angew. Chem., Int. Ed., 2008, 47, 6638–6642.
4 S. Fantauzzi, A. Caselli and E. Gallo, Dalton Trans., 2009, 5434–5443.
5 C. Y. Zhou, W. Y. Yu and C. M. Che, Org. Lett., 2002, 4, 3235–3238.
6 M. S. Rodriguez-Morgade, M. E. Plonska-Brzezinska, A. J.
Athans, E. Carbonell, G. de Miguel, D. M. Guldi, L. Echegoyen
and T. Torres, J. Am. Chem. Soc., 2009, 131, 10484–10496.
7 J. Xie, J.-S. Huang, N. Zhu, Z.-Y. Zhou and C.-M. Che, Chem.–Eur.
J., 2005, 11, 2405–2416.
8 J. S. Huang, G. A. Yu, J. Xie, K. M. Wong, N. Y. Zhu and
C. M. Che, Inorg. Chem., 2008, 47, 9166–9181.
9 X. Zhou, M. K. Tse, D. D. Wu, T. C. W. Mak and K. S. Chan,
J. Organomet. Chem., 2000, 598, 80–86.
1
P2Rh2: H NMR d 1.79 (t, 24H, J = 7.5 Hz, ethyl-CH3),
3.84 (m, 12H, ethyl-CH2 and P-Ar-Ho), 6.38 (t, 8H, J =
7.8 Hz, P-Ar-Hm), 6.84 (t, 8H, 7.3 Hz, P-Ar-Hp), 6.91 (d, 4H,
J = 6.8 Hz, CRCAr-Ho), 7.41 (t, 4H, J = 7.5 Hz, CRCAr-Hm),
7.51 (t, 2H, J = 7.5 Hz, CRCAr-Hp), 9.72 (s, 4H, Hmeso);
31P NMR d À9.5 (d, J = 88 Hz). P2Rh3: 1H NMR d 1.66
(t, 12H, J = 7.3 Hz, ethyl-CH3), 2.26 (s, 12H, b-CH3), 3.73
(q, 8H, J = 7.3 Hz, ethyl-CH2), 3.98 (m, 8H, P-Ar-Ho), 6.47
(t, 8H, J = 7.5 Hz, P-Ar-Hm), 6.91 (t, 8H, 7.3 Hz, P-Ar-Hp),
7.35 (m, 8H, Ar-H), 7.50 (m, 4H, Ar-H), 7.59 (t, 6H, J = 7.8 Hz,
meso-Ar-Hm,p), 7.76 (t, 2H, J = 7.5 Hz, CRCAr-Hp), 9.76 (s, 2H,
Hmeso); 31P NMR d À9.8 (d, J = 89 Hz). P2Rh4: 1H NMR d 4.13
(q, 8H, J = 7.3 Hz, P-Ar-Ho), 6.56 (t, 8H, J = 7.3 Hz, P-Ar-Hm),
6.90 (d, 4H, J = 8.3 Hz, CRCAr-Ho), 6.95 (t, 8H, 7.3 Hz,
P-Ar-Hp), 7.30 (m, 4H, CRCAr-Hm), 7.44 (t, 2H, J = 7.3 Hz,
CRCAr-Hp), 7.64 (m, 20H, meso-Ar), 8.79 (s, 8H, b-H);
31P NMR d À9.4 (d, J = 87 Hz). P2Rh5: 1H NMR d 4.19
(q, 8H, J = 7.3 Hz, P-Ar-Ho), 5.32 (s, 72H tBu), 6.58 (t, 8H, J =
7.2 Hz, P-Ar-Hm), 6.87 (d, 4H, J = 7.1 Hz, CRCAr-Ho), 6.96
(t, 8H, 7.4 Hz, P-Ar-Hp), 7.16 (m, 4H, CRCAr-Hm), 7.69 (d, 4H,
J = 1.9 Hz, meso-Ar-Hp), 7.81 (m, 8H, meso-Aro), 8.85 (s, 8H,
b-H); 31P NMR d À8.2 (d, J = 85 Hz).
10 M. S. Sanford and J. T. Groves, Angew. Chem., Int. Ed., 2004, 43,
588–590.
11 K. Kajiyama, T. K. Miyamoto and K. Sawano, Inorg. Chem.,
2006, 45, 502–504.
12 I. Bouamaied, T. Coskun and E. Stulz, in Structure & Bonding,
ed. E. Alessio, Springer, Heidelberg, 2006, pp. 1–48.
13 E. Stulz, S. M. Scott, A. D. Bond, S. Otto and J. K. M. Sanders,
Inorg. Chem., 2003, 42, 3086–3096.
14 E. Stulz, J. K. M. Sanders, M. Montalti, L. Prodi, N. Zaccheroni,
F. de Biani, E. Grigiotti and P. Zanello, Inorg. Chem., 2002, 41,
5269–5275.
15 E. Stulz, M. Maue, N. Feeder, S. J. Teat, Y. F. Ng, A. D. Bond,
S. Darling and J. K. M. Sanders, Inorg. Chem., 2002, 41, 5255–5268.
16 B. G. Maiya, N. Bampos, A. A. Kumar, N. Feeder and J. K. M.
Sanders, New J. Chem., 2001, 25, 797–800.
17 J. E. Redman, N. Feeder, S. J. Teat and J. K. M. Sanders, Inorg.
Chem., 2001, 40, 2486–2499.
18 J. E. Redman, N. Feeder, S. J. Teat and J. K. M. Sanders, Inorg.
Chem., 2001, 40, 3217–3221.
19 E. Stulz, S. M. Scott, Y. F. Ng, A. D. Bond, S. J. Teat, S. L. Darling,
N. Feeder and J. K. M. Sanders, Inorg. Chem., 2003, 42, 6564–6574.
20 S. L. Darling, E. Stulz, N. Feeder, N. Bampos and J. K. M.
Sanders, New J. Chem., 2000, 24, 261–264.
21 E. Stulz, M. Maue, S. M. Scott, B. E. Mann and J. K. M. Sanders,
New J. Chem., 2004, 28, 1066–1072.
22 E. Stulz, S. M. Scott, A. D. Bond, S. J. Teat and J. K. M. Sanders,
Chem.–Eur. J., 2003, 9, 6039–6048.
23 E. Stulz, Y.-F. Ng, S. M. Scott and J. K. M. Sanders, Chem.
Commun., 2002, 524–525.
24 H. Xu and D. K. P. Ng, Inorg. Chem., 2008, 47, 7921–7927.
25 K. Funatsu, A. Kimura, T. Imamura, A. Ichimura and Y. Sasaki,
Inorg. Chem., 1997, 36, 1625–1635.
26 K. Funatsu, T. Imamura, A. Ichimura and Y. Sasaki, Inorg.
Chem., 1998, 37, 4986–4995.
27 K. Funatsu, T. Imamura, A. Ichimura and Y. Sasaki, Inorg.
Chem., 1998, 37, 1798–1804.
1
P2Ru2: H NMR d 1.61 (t, 12H, J = 7.4 Hz, ethyl-CH3),
3.68 (m, 8H, ethyl-CH2), 4.19 (m, 8H, P-Ar-Ho), 6.29 (t, 8H,
J = 7.6 Hz, P-Ar-Hm), 6.63 (t, 8H, 7.6 Hz, P-Ar-Hp), 6.98
(d, 4H, J = 7.2 Hz, CRCAr-Ho), 7.30 (m, 4H, CRCAr-Hm),
7.51 (t, 2H, J = 7.5 Hz, CRCAr-Hp), 8.80 (s, 4H, Hmeso);
31P NMR d À1.0. P2Rh3: 1H NMR d 1.53 (t, 12H, J = 7.8 Hz,
ethyl-CH3), 1.55 (s, 12H, b-CH3), 3.56 (q, 8H,
J =
7.4 Hz, ethyl-CH2), 4.42 (m, 8H, P-Ar-Ho), 6.41 (t, 8H, J =
7.5 Hz, P-Ar-Hm), 6.71 (t, 4H, 7.0 Hz, P-Ar-Hp), 7.01 (d, 4H,
J = 8.3 Hz, CRCAr-Ho), 7.29 (m, 6H, Ar-H), 7.40 (m, 6H,
Ar-H), 7.54 (m, 2H, Ar-H), 8.80 (s, 2H, Hmeso); 31P NMR d 2.0.
P2Rh4: 1H NMR d 4.57 (m, P-Ar-Ho), 6.50 (t, 8H, J = 7.5 Hz,
P-Ar-Hm), 6.77 (t, 8H, 7.3 Hz, P-Ar-Hp), 6.99 (d, 4H, J =
8.3 Hz, CRCAr-Ho), 7.16 (t, 4H, J = 7.5 Hz, CRCAr-Hm),
7.27 (t, 2H, J = 7.3 Hz, CRCAr-Hp), 7.46 (t, 8H, J = 7.8 Hz,
meso-Arm), 7.54 (t, 4H, J = 7.3 Hz, meso-Arp), 7.60 (d, 8H, J =
6.8 Hz, meso-Aro), 8.13 (s, 8H, b-H); 31P NMR d 0.2. P2Rh5:
1H NMR d 4.57 (q, 8H, J = 7.3 Hz, P-Ar-Ho), 5.30 (s, 72H
tBu), 6.48 (t, 8H, J = 7.5 Hz, P-Ar-Hm), 6.74 (t, 8H, 7.4 Hz,
P-Ar-Hp), 6.95 (d, 4H, J = 9.1 Hz, CRCAr-Ho), 7.05 (t, 4H, J =
7.7 Hz, CRCAr-Hm), 7.15 (t, 2H, J = 10.1 Hz, CRCAr-Hp),
7.34 (m, 8H, meso-Ar-Ho,m), 7.65 (m, 4H, meso-Arp), 8.17 (s, 8H,
b-H); 31P NMR d 3.0.
28 K. Fukushima, K. Funatsu, A. Ichimura, Y. Sasaki, M. Suzuki,
T. Fujihara, K. Tsuge and T. Imamura, Inorg. Chem., 2003, 42,
3187–3193.
29 M. J. Gunter and K. M. Mullen, Inorg. Chem., 2007, 46, 4876–4886.
30 K. M. Mullen and M. J. Gunter, J. Org. Chem., 2008, 73,
3336–3350.
31 A. J. Carty, N. K. Hota, T. W. Ng, H. A. Patel and T. J. O’Connor,
Can. J. Chem., 1971, 49, 2706–2711.
32 O. Q. Munro, G. L. Camp and L. Carlton, Eur. J. Inorg. Chem.,
2009, 2512–2523.
33 C. J. Medforth, C. M. Muzzi, K. M. Shea, K. M. Smith,
R. J. Abraham, S. L. Jia and J. A. Shelnutt, J. Chem. Soc., Perkin
Trans. 2, 1997, 839–844.
34 C. J. Medforth, C. M. Muzzi, K. M. Shea, K. M. Smith,
R. J. Abraham, S. L. Jia and J. A. Shelnutt, J. Chem. Soc., Perkin
Trans. 2, 1997, 833–837.
35 E. Steiner and P. W. Fowler, ChemPhysChem, 2002, 3, 114–116.
36 G. M. Sheldrick, University of Gottingen, Germany.
¨
37 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C.
Burla, G. Polidori and M. Camalli, J. Appl. Cryst., 1994, 27, 435–436.
c
2696 New J. Chem., 2011, 35, 2691–2696
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011