1032
H.S. Son, J.Y. Lee / Organic Electronics 12 (2011) 1025–1032
[3] K.S. Yook, S.O. Jeon, C.W. Joo, J.Y. Lee, Org. Electron. 10 (2009) 170.
[4] .R.J. Holmes, B.W. D0Andrade, S.R. Forrest, X. Ren, J. Li, M.E.
Thompson, Appl. Phys. Lett. 83 (2003) 3818.
[5] X. Ren, J. Li, R.J. Holmes, P.I. Djurovich, S.R. Forrest, M.E. Thompson,
Chem. Mater. 16 (2004) 4743.
[6] M.H. Tsai, H.W. Lin, H.C. Su, T.H. Ke, C.C. Wu, F.C. Fang, Y.L. Liao, K.T.
Wong, C.I. Wu, Adv. Mater. 18 (2006) 1216.
PPO21
PPO25
PPO26
[7] M.F. Wu, S.J. Yeh, C.T. Chen, H. Murayama, T. Tsuboi, W. Li, I. Chao, S.
Liu, J.K. Wang, Adv. Funct. Mater. 17 (2007) 1887.
[8] A.B. Padmaperuma, L.S. Sapochak, P.E. Burrows, Chem. Mater. 18
(2006) 2389.
[9] S.O. Jeon, K.S. Yook, C.W. Joo, J.Y. Lee, Appl. Phys. Lett. 94 (2009)
013301.
[10] S.O. Jeon, K.S. Yook, C.W. Joo, J.Y. Lee, Adv. Mater. 22 (2010) 1872.
[11] S.O. Jeon, K.S. Yook, C.W. Joo, J.Y. Lee, Adv. Funct. Mater. 19 (2009)
3644.
[12] P.A. Vecchi, A.B. Padmaperuma, H. Qiao, L.S. Sapochak, P.E. Burrows,
Org. Lett. 8 (2006) 4211.
[13] N. Chopra, J.S. Swensen, E. Polikarpov, L. Cosimbescu, F. So, A.B.
Padmaperuma, Appl. Phys. Lett. 97 (2010) 033304.
[14] F.-M. Hsu, C.-H. Chien, P.-I. Shih, C.-F. Shu, Chem. Mater. 21 (2009)
1017.
[15] L.S. Sapochak, A.B. Padmaperuma, X. Cai, J.L. Male, P.E. Burrows, J.
Phys. Chem. C 112 (2008) 7989.
[16] X. Cai, A.B. Padmaperuma, L.S. Sapochak, P.A. Vecchi, P.E. Burrows,
Appl. Phys. Lett. 92 (2008) 083308.
[17] L.S. Sapochak, A.B. Padmaperuma, P.A. Vecchi, X. Cai, P.E. Burrows,
Proc. SPIE 6655 (2007) 665506.
[18] D. Yu, Y. Zhao, H. Xu, C. Han, D. Ma, Z. Peng, S. Gao, P. Yan, Chem. Eur.
J. 17 (2011) 2592.
[19] C. Han, G. Xie, H. Xu, Z. Zhang, D. Yu, Y. Zhao, P. Yan, Z. Deng, Q. Li, S.
Liu, Chem. Eur. J. 17 (2011) 445.
400
500
600
700
800
Wavelength (nm)
Fig. 8. Electroluminescence spectra of the deep blue PHOLEDs with the
PPO21, PPO25 and PPO26 hosts.
Electroluminescence (EL) spectra of the deep blue
PHOLEDs are shown in Fig. 8. Three blue PHOLEDs showed
similar EL spectra with a peak maximum at 454 nm. The
color coordinate of the deep blue PHOLEDs was (0.14,
0.18) in all host materials. Therefore, high efficiency deep
blue PHOLEDs with a y color coordinate less than 0.20
could be developed using the phenylcarbazole based phos-
phine oxide compounds.
[20] J. Ding, Q. Wang, L. Zhao, D. Ma, L. Wang, X. Jing, F. Wang, J. Mater.
Chem. 20 (2010) 8126.
[21] S. Tokito, T. Iijima, Y. Suzuki, H. Kita, T. Tsuzuki, F. Sato, Appl. Phys.
Lett. 83 (2003) 569.
4. Conclusions
The photophysical properties and device performances
of phenylcarbazole based phosphine oxide host materials
were correlated with the substitution position of the phos-
phine oxide. The substitution at ortho position of the phe-
nyl group induced an intramolecular charge transfer
complex formation, while meta or para substitution did
not significantly change the physical properties of the core
structure. The ortho substitution enhanced the current
density through intramolecular charge transfer, while the
meta and para substitution enhanced the quantum effi-
ciency of the deep blue PHOLEDs. A high quantum effi-
ciency of 20.4% could be achieved using the high triplet
energy host materials in deep blue PHOLEDs.
[22] . S.-J. Su, H. Sasabe, T. Takeda, J. Kido, Chem. Mater. 20 (2008) 1691.
[23] H. Fukagawa, K. Watanabe, T. Tsuzuki, S. Tokito, Appl. Phys. Lett. 93
(2008) 133312.
[24] W. Li, J. Qiao, L. Duan, L. Wang, Y. Qiu, Tetrahedron 63 (2007) 10161.
[25] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.
Cheeseman, J.A. Montgomery, T. Vreven, Jr., K.N. Kudin, J.C. Burant,
J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross,
C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G.
Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K.
Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui,
A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith,
M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W.
Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople,
Gaussian 03, Revision B05, Gaussian, Inc., Pittsburgh, PA 2003.
[26] A. Weller, Pure Appl. Chem. 16 (1968) 115.
References
[1] M.A. Baldo, D.F. O’Brien, T. You, A. Shoustikov, S. Sibley, M.E.
Thompson, S.R. Forrest, Nature 395 (1998) 151.
[2] R.J. Holmes, S.R. Forrest, Y.-J. Tung, R.C. Kwong, J.J. Brown, S. Garon,
M.E. Thompson, Appl. Phys. Lett. 82 (2003) 2422.
[27] J.Y. Lee, J.H. Kwon, Appl. Phys. Lett. 86 (2005) 063514.
[28] K.S. Yook, S.O. Jeon, C.W. Joo, J.Y. Lee, J. Ind. Eng. Chem. 15 (2009)
907.