X. Leng et al. · Three Novel Nitrogen-containing Macrolides
933
was separated and washed with an aqueous saturated solution 736, 695 cm−1. – 1H NMR (400 MHz, CDCl3): δ = 7.80 (m,
of sodium carbonate. All volatiles were evaporated under re- 2H, Har), 7.59 (m, 2H, Har), 7.28 (m, 2H, Har), 6.80 (t, 1H,
duced pressure.
Har), 6.62 (d, 2H, Har), 4.56 [t, 4H, 2(O-CH2)], 3.83 [t, 4H,
2,2ꢀ-(Phenylimino)diethanol: Slightly yellow crystals 2(N-CH2)]. – MS (EI, 70 eV): m/z (%) = 311 (100) [M]+. –
(30.8 g, 85 %). M. p. 56 – 57 ◦C (lit.: 55 – 56 ◦C [21]).
2,2ꢀ-[(4-methoxyphenyl)azanediyl]diethanol: Colorless
solid (29.1 g, 69 % ). M. p. 70 – 71 ◦C.
C18H17NO4 (311.33): calcd. C 69.44, H 5.50, N 4.50; found
C 69.41, H 5.49, N 4.52.
◦
3: Yield: 43 %. M. p. 85 – 87 C. – IR(film): ν = 3065,
2925, 1732 (C=O), 1621, 1515, 1457, 1379, 1275, 1187,
1153, 1043, 813 cm−1. – 1H NMR (400 MHz, CDCl3): δ =
6.85 (t, 2H, Har), 6.60 (d, 2H, Har), 4.35 [t, 4H, 2(CH2-O)],
3.76 (s, 3H, OMe), 3.60 [t, 4H, 2(CH2-N)], 2.63 [d, 4H,
2(CH2-CO)]. – MS (EI, 70 eV): m/z (%) = 293 (100) [M]+. –
C15H19NO5 (293.31): calcd. C 61.42, H 6.53, N 4.78; found
C 61.41, H 6.55, N 4.79.
Macrolides 1, 2 and 3
A mixture of 0.006 mol of 2,2ꢀ-(phenylimino)diethanol
or 2,2ꢀ-[(4-methoxyphenyl)azanediyl]diethanol, 1000 mL of
dry dichloromethane, and 1 mL (0.012 mol) of pyridine
was stirred in the dark at r. t. To this solution 0.006 mol of
succinyl chloride or 1,2-benzenedicarbonyl chloride in
dichloromethane was added dropwise over 4 h. The mixture
was stirred overnight at r. t. About 900 mL of the solvent was
removed under atmospheric pressure, and the residual solu-
tion was washed 4 times with 50 mL of water and dried over
CaCl2. The residue was then purified by column chromatog-
raphy on silica gel, eluting with petroleum ether/ethyl acetate
X-Ray structure determination
X-Ray diffraction data were collected on a Bruker
Smart 1000 CCD diffractometer with graphite-
˚
monochromatized MoKα radiation (λ = 0.71073 A) at
r. t. The structures were solved by Direct Methods and
refined by full-matrix least-squares methods on F2 with the
(2 :1 ).
◦
1: Yield: 45 % . M. p. 82 – 83 C. – IR (film): ν = 3098, programs SHELXS-97 [22] and SHELXL-97 [23]. All non-
3032, 1733 (C=O), 1599, 1504, 1259, 1221 755, 694 cm−1. – hydrogen atoms were refined anisotropically. All hydrogen
1H NMR (400 MHz, CDCl3): δ = 7.26 (m, 2H, Har), 6.79 (t, atoms were treated using a riding model. Due to the lack of
1H, Har), 6.62 (d, 2H, Har), 4.39 [t, 4H, 2(O-CH2)], 3.67 [t, heavy atoms, refinement of Flack’s x parameter [24] for 3
4H, 2(N-CH2)], 2.65 [m, 4H, 2(CH2-CO)]. – MS (EI, 70 eV): proved to be inconclusive.
m/z (%) = 263 (100) [M]+. – C14H17NO4 (263.29): calcd.
CCDC 833941 – 833943 contain the supplementary crys-
C 63.87, H 6.51, N 5.32; found C 63.83, H 6.53, N 5.31.
tallograpic data for this paper. These data can be obtained
2: Yield: 38 % . M. p. 137 – 138. – IR (film): ν = 3062, free of charge from The Cambridge Crystallographic Data
[1] S. Bra¨se, A. Encinas, J. Keck, C. F. Nising, Chem. Rev.
2009, 109, 3903 – 3990.
[2] A. Dondoni, A. Marra, Chem. Rev. 2010, 110, 4949 –
4977.
[10] S. C. Mwakwari, W. Guerrant, V. Patil, S. I. Khan,
B. L. Tekwani, Z. A. Gurard-Levin, M. Mrksich, A. K.
Oyelere, J. Med. Chem. 2010, 53, 6100 – 6111.
[11] N. Oku, K. Takada, R. W. Fuller, J. A. Wilson, M. L.
Peach, L. K. Pannell, J. B. Mcmahon, K. R. Gustafson,
J. Am. Chem. Soc. 2010, 132, 10278 – 10285.
[12] J. D. Mortison, D. H. Sherman, J. Org. Chem. 2010, 75,
7041 – 7051.
[3] S. Lee, J. Xie, X. Chen, Chem. Rev. 2010, 110, 3087 –
3111.
[4] M. Wang, C. N. Boddy, Biochemistry 2008, 47,
11793 – 11803.
[5] N. Horstmann, S. Essig, S. Bockelmann, H. Wieczorek,
M. Huss, F. Sasse, D. Menche, J. Nat. Prod. 2011, 74,
1100 – 1105.
[6] A. Hamdache, A. Lamarti, J. Aleu, I. G. Collado, J.
Nat. Prod. 2011, 74, 893 – 899.
[7] D. Li, G. Carr, Y. Zhang, D. E. Williams, A. Amlani,
H. Bottriell, A. L. -F. Mui, R. J. Anderson, J. Nat. Prod.
2011, 74, 1093 – 1099.
[8] A. Krunic, A. Vallat, S. Mo, D. D. Lantvit, S. M. Swan-
son, J. Orjala, J. Nat. Prod. 2010, 73, 1927 – 1932.
[9] E. Marsault, M. L. Peterson, J. Med. Chem. 2011, 54,
1961 – 2004.
[13] R. Carrillo, V. S. Mart´ın, M. Lo´pez, T. Mart´ın, Tetrahe-
dron 2005, 61, 8177 – 8191.
[14] G. Mehta, K. Srinivas, R. Vidya, R. Uma, A. C. Kun-
war, K. Ravi Kumar, M. Vairamani, Tetrahedron. 1988,
54, 10879 – 10890.
[15] S. Muthusamy, B. Gnanaprakasam, Tetrahedron 2007,
63, 3355 – 3362.
[16] M. Meyer, J. R. Telford, S. M. Cohen, D. J. White,
J. X. K. N. Raymond, J. Am. Chem. Soc. 1997, 119,
10093 – 10103.
[17] D. G. Rivera, O. Pando, R. Bosch, L. A. Wessjohann, J.
Org. Chem. 2008, 73, 6229 – 6238.
Unauthenticated
Download Date | 1/3/18 6:53 AM